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Al achieves silver-medal standard solving International Mathematical
Olympiad problems
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"First, the problems were manually translated into formal mathematical language for
our systems to understand.”

https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/
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(In)formalization, symbolic CNL
Trybulec 1973: Mizar

Coscoy, Kahn & Théry 1994: Coq proofs to text
Wenzel 1999: Isabelle-Isar

Hallgren & Ranta 2000: GF-Alfa (Agda)

Paskevich 2007: ForTheL

Cramer, Koepke & al 2009: Naproche

Humayoun & Raffalli 2011: MathNat

Pathak 2023: GF-Lean

Massot 2024: Verbose-Lean4

Kelber, Kohlhase, Schaefer & Schutz: Flexiformal mathematics, 2025
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Autoformalization, neural

Wang, Kaliczyk & Urban 2018: NMT and Mizar
Wu, Jiang, Li, Rabe, Staats, Jamnik & Szegedy 2022 : autoformalization with LLM
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Don't guess if you know.

- there is no essential need for neural informalization
- (except its allegedly low cost)

- However, (auto)formalization may require guessing
- symbolic informalization has things to contribute even here

- synthetic data generation
- verification feedback



Multi-language Diversity Benefits Autoformalization

Albert Q. Jiang Wenda Li Mateja Jamnik
University of Cambridge University of Edinburgh University of Cambridge
qj213Q@cam.ac.uk wenda.li@ed.ac.uk mateja.jamnik@cl.cam.ac.uk

- "informalisation is much easier than formalisation"

- uses an GPT-4 to produce the dataset MMA to fine-tune LLaMA
- ~70% "more or less acceptable”

- resulting autoformalization:
- 16-18% "acceptable with minimal corrections”

betio-inforrmatizs

NeurlPS 2024,



"symbolic informalisation tools
- result in natural language content that lacks the inherent
diversity and flexibility in expression: they are rigid and not
natural-language-like.

- symbolic informalisation tools are hard to design and implement

- They also differ a lot for different formal languages, hence the
approach is not scalable for multiple formal languages. "

https://arxiv.org/abs/2311.03755
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Informath



The goal of Informath

Symbolic informalization that

has
results in natural language content that taeks the inherent
diversity and flexibility in expression: they are #gid-anrd+rot

natural-language-like.
feasible

symbolic informalisation tools are kard to design and implement
with proper methods

can be shared
They alse-differaot for different formal languages, hence the
approach is ret scalable for multiple formal languages. And
even for multiple natural languages.



Agda:

postulate propllo :
(a : Int) -> (c : Int) ->
and (odd a) (odd c) -> all Int (\ b ->
even (plus (times a b) (times b c)))

Prop110. Let a,c € Z. Assume that both
a and ¢ are odd. Then ab + bc is even for
all integers b.

Rocq:

propl10 : forall a : Int, forall c : Int,
(odd a /\ odd c -> forall b : Int,

even (a *b +b * c)) .

Prop110. Soient a,c € Z. Supposons que
a et ¢ sont impairs. Alors ab + bc est pair
pour tous les entiers b.

Lean:

propl10 (a c : Int) (x : odd a A odd c)

V b : Int, even (@ * b + b * )

Prop110. Léat a,c € Z. Anta att bade a
och ¢ ar udda. Da ar ab + bc jamnt for
alla heltal b.
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Agda:

postulate propl10 :
(a : Int) -> (c : Int) ->

and (odd a) (odd c) -> all Int (\ b ->
even (plus (times a b) (times b c)))

Prop110. Let a,c € Z. Assume that both
a and ¢ are odd. Then ab + bc is even for
all integers b.

Rocq:

propl10 : forall a : Int, fon
(odd a /\ odd c -> forall b

even (a *b + b * c)) .

Dedukti:

proplle : (a : Elem Int) ->
(c : Elem Int) ->
Proof (and (odd a)
(odd c)) -»>
Proof (forall Int

(b => even (plus

(times a b) (times b c)))).

Lean:

proplle (a c¢ : Int) (x :

V b : Int, even (@ * b + b * ¢)

odd a A odd c)

GF:

Axiomdmt (StrLabel "propl10")
(ConsHypo (LetFormulaHypo (FElem
(ConsTerm (TIdent (StrIdent "a"))
(BaseTerm (TIdent (StrIdent "c"))))
(SetTerm integer_Set))) (ConsHypo
(PropHypo (AdjProp odd_Adj (AndExp
(BaseExp (TermExp (TIdent (StrIdent
"a"))) (TermeExp (TIdent (StrIdent
"c"))))))) BaseHypo)) (PostQuantProp
(AdjProp even_Adj (TermExp
(AppOperTerm plus_Oper (TTimes (TIdent
(StrIdent "a")) (TIdent (StrIdent
"b"))) (TTimes (TIdent (StrIdent "b"))
(TIdent (StrIdent "c"))))))
(AllIdentsKindExp (BaseIdent (StrIdent
"b")) (SetKind integer_Set)))

t a,c € Z. Supposons que
airs. Alors ab + bc est pair
ntiers b.

alla heltal b.

PropII0. Lat a,c € Z. Anta att bade a
och ¢ ar udda. Da ar ab + bc jamnt for
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Interlude: GF



GF = Grammatical Framework

GF = Logical Framework + Grammar

First release 1998 at Xerox Research Centre Europe, Grenoble
Based on earlier work with ALF (Another LF, predecessor of Agda) 1992

https://www.grammaticalframework.orqg/



https://www.grammaticalframework.org/

Abstract and concrete syntax: judgements

-- abstract syntax = LF -- concrete syntax
cat C lincat C = L

fun £ : T lin £ = t




Abstract and concrete syntax: examples

-- abstract syntax

cat Prop ; Term

fun commutative :

= LF

Term -> Prop

-- concrete syntax

Str

lincat Prop, Term

lin commutative x =
X ++ "is commutative"




Concrete syntax: parameters and operations

-- abstract syntax
cat Prop ; Term

fun commutative

= LF

Term -> Prop

-- concrete syntax for English

lincat
Prop = Str
Term = {s : Str ; n : Number}

lin commutative x = x.s ++
copula ! x.n ++ "commutative"

param
Number = Sg | P1

oper
copula : Number => Str =
table {Sg => "is" ; Pl => "are"




Concrete syntax: parameters and operations

-- concrete syntax for French

-- abstract syntax = LF

lincat
cat Prop ; Term Prop = Mood => Str
Term = {s : Str ; g : Gender ; n : Number}

fun commutative : Term -> Prop
lin commutative x = \\m => x.s ++

copula ' m I n ++

mkA "commutatif" ! x.g ! x.n
param

Number = Sg | P1

Gender = Masc | Fem

Mood = Ind | Subj

oper
mkA : Str -> Gender => Number = Str = ...
copula : Mood => Number => Str = ...




Reversible mappings

Abstract syntax

linearization parsing




Multilingual grammars

Abstract syntax

linearization parsing




4

~~h*t’t s://commons.wikimedia.org/wiki/Maps_of the world#/media/File:BlankMap-World-noborders.pn

RGL = Resource Grammars Library, created by the GF community 2001-2025


https://commons.wikimedia.org/wiki/Maps_of_the_world#/media/File:BlankMap-World-noborders.png

RGL =
Resource
Grammar
Library

morphology and
syntax for ~50
languages

-- inflection of French adjectives, slightly simplified

mkA : Str -> A = \adj ->

case adj of {

_ + "eux"=>
_+ "al" =»>
_+ "en" =>
_+ "el" =»>
X + "er" =>
_ o+ "if" =
_ o+ "s" =
_+ "e" =
_ =>
} s

<adj,
<adj,
<adj,
<adj,
<adj,
<adj,
<adj,
<adj,
<adj,

init adj + "se", adj, init adj + "ses"> ;

adj + "e", init adj + "ux", adj + "es"> ;

adj + "ne", adj + "s", adj + "nes"> ;

adj + "le", adj + "s", adj + "les"> ;

X + "ere", adj + "s", x + "eres"> ;

init adj + "ve", adj + "s", init adj + "ves"> ;
adj + "e", adj, adj + "es"> ;

adj, adj + "s", adj + "s"> ;

adj + "e", adj + "s", adj + "es">

http://www.grammaticalframework.org/lib/doc/synopsis/
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RGL

syntactic combination
API

shared by all
languages in the
library

usable as functor
interface + instances

http://www.grammaticalframework.org/lib/
doc/synopsis/

mkCl

mkC1l

mkCl

mkC1l

mkC1l

mkCl

mkCl

mkCl

mkCl

mkC1l

mkCl

mkCl

mkCl

mkCl

mkC1l

mkCl

mkC1l

mkCl

mkCl

o

NP —>V2Q -> NP -> QS -> Cl

NP -> V2V —> NP -> VP —> Cl

NP —> VPSlash -> NP —> ClI

NP —> A —> Cl

NP —> A -> NP —> Cl

NP —> A2 —> NP — ClI

NP -> AP —> ClI

NP —> NP — CI

NP —> N - Cl

NP —> CN -> ClI

NP —> Adv —> CI

NP —> VP —> ClI

N - Cl

CN —CI

NP — CI

NP —> RS —> ClI

Adv —> S - Cl

V- Cl

VP —>Cl

SR IR o 5

she asks him who sleeps
she begs him to sleep

she begs him to sleep here

she is ofd

sh

APIl: mkUtt (mkCl she_NP old_A)
Afr: sy is oud

sh o Ara: 44,43 oo
she ish Bul: 79 e cTapa
e Cat: ella és vella
sh * Chi: #h@EHY
* Cze: je stard
sh  « Dan: hun er gammel
e Dut: zij is oud
- * Eng: she is old
sh  ° Est:temaon vana
e Eus: hura zaharra da
sh e Fin: hdn on vanha
* Fre: elle est vieille
the . Ger: sie ist alt
thar Gre: autn eivat maAa
e Hin: I8 321 &
th. e Ice: constant not found: old_A

iti

iti

it

iti

+h

.

Ita: lei & vecchia

Jpn: BX(FE L)

Lat: vetus est

Lav: vipa ir veca

MIt: hi hija gadima

Mon: TyyHuii xyyumnH 6asigar Hb
Nep: 31 g1 187

Nno: ho er gammal
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Concrete syntax: functor over the RGL

-- abstract syntax code

cat Prop ; Term
fun commutative : Term -> Prop

-- shared functor code

lincat
Prop = Cl
Term = NP
lin

commutative x =
mkCl x commutative A

-- added code for each language

-- Eng
commutative A =
mkA "commutative"

-- Fre
commutative A =

mkA "commutatif"

-- Fin
commutative A =
mkA "kommutatiivinen"




Context-free expansions of 'commutative : Term -> Prop’

Prop_ 1 © ::= Term_5 "is" "commutative"

Prop_ 1 © ::= Term_6 "are" "commutative"
Prop_ 1 2 ::= "are" Term_6 "commutative"
Prop_ 1 2 ::= "is" Term_5 "commutative"

Prop_1 3 ::= Term_5 "is" "not" "commutative"
Prop_1 3 ::= Term_6 "are" "not" "commutative"
Prop_ 1 5 ::= "are" Term_6 "not" "commutative"
Prop_ 1 5 ::= "is" Term_5 "not" "commutative"
Prop_ 1 6 ::= Term 5 "isn't" "commutative"
Prop_ 1 6 ::= Term_6 "aren't" "commutative"
Prop_ 1 7 ::= Term 5 "isn't" "commutative"
Prop_ 1 7 ::= Term_6 "aren't" "commutative"
Prop_1 8 ::= "aren't" Term_6 "commutative"
Prop_ 1 8 ::= "isn't" Term 5 "commutative"




Context-free expansions of 'commutative

: Term -> Prop'

Prop_
Prop_
Prop_
Prop_
Prop_
Prop_
Prop_
Prop_
Prop_
Prop_
Prop_
Prop_
Prop_
Prop_

HHHHHHHHHHHHHH
oooo\l\lc\c\u-nmwwmm@@

Term_5 "is" "commutative"

Term_6 "are" "commutative"

"are" Term_6 "commutative"

"is" Term_5 "commutative"

Term_5 "is" "not" "commutative"
Term_6 "are" "not" "commutative"
"are" Term_6 "not" "commutative"
"is" Term_5 "not" "commutative"
Term_5 "isn't" "commutative"
Term_6 "aren't" "commutative"
Term_5 "isn't" "commutative"
Term_6 "aren't" "commutative"

"commutative"
"commutative"

"aren't" Term_6
"isn't" Term_5

Term_1 "est"

= Term_4 "ne"

Term_2 "ne"

Term_4 "ne"

Term_3 "ne"
Term_4 "ne"
= Term_1 "ne"
Term_2 "ne"
= Term_3 "ne"
= Term_4 "ne"

= Term_3 "ne"
Term_4 "ne"
Term_1 "ne"
Term_2 "ne"
= Term_3 "ne"
Term_4 "ne"
"est" Term_1

"ne" "sont"
"ne" "sont"

"he" "soit"
"ne" "soit"

Term_2 "n'est"
Term_3 "sont"
"sont" "commutatifs"
Term_1 "soit"
"soit" "commutatif"

= Term_3 "soient" "commutatifs"
"soient" "commutatifs"
"n'est" Term_:
"n'est" Term_.
"ne" "sont" Term_3 "commutatifs"
"ne" "sont" Term_4 "commutatifs"
"ne" "soient"
"ne" "soient"
"ne" "soit" Term_1 "commutatif"
"ne" "soit" Term_2 "commutatif"
= Term_1 "n'est"
Term_2 "n'est"

"n'est" Term_.
"ne" "sont" Term_4 "commutatifs"
"sont" Term_3
"ne" "soient"
"ne" "soit" Term_2 "commutatif"
"soient" Term_3 "commutatifs"

"soit" Term_1
"n'est" "pas"
"n'est" "pas"
"pas" Term_3 "commutatifs"
"pas" Term_4 "commutatifs"
"ne" "soient"
"ne" "soient"
"pas" Term_1 "commutatif"
"pas" Term_2 "commutatif"

"commutatif"
"commutatif"
"commutatifs"

"commutatif"

1 "commutatif"
2 "commutatif"

Term_3 "commutatifs"
Term_4 "commutatifs"

"pas" "commutatif"
"pas" "commutatif"

"sont" "pas" "commutatifs"
"sont" "pas" "commutatifs"
"soit" "pas" "commutatif"
"soit" "pas" "commutatif"
"soient" "pas" "commutatifs"
"soient" "pas" "commutatifs"
Term_1 "n'est"
Term_2 "n'est"
"sont" "commutatifs"
"sont" "commutatifs"
"soit" "commutatif"
"soit" "commutatif"
"soient" "commutatifs"
"soient" "commutatifs"

"commutatif"
"commutatif"

"commutatif"
2 "commutatif"

"commutatifs"
Term_4 "commutatifs"

"commutatif"
Term_1 "commutatif"
Term_2 "commutatif"

"pas" Term_3 "commutatifs"
"pas" Term_4 "commutatifs"




French

Hindi

Interlingua

Catalan

Thai
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4 is even
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even 5

informalization; GF

autoformalization: GF
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4 is even
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even 4
not (even 5)

NO PARSE

even 5

informalization; GF

autoformalization: GF

autoformalization: LLM

4 is even
5is not even

5 can't be even

5is even

feedback informalization: GF




informalization; GF

Formal autoformalization: GF Natural
mathematics language

autoformalization: LLM

feedback informalization: GF

Vision:
- the formal system is a black box that performs verification
- humans communicate with it in natural language



Mapping between Dedukti and GF



-- Dedukti.bnf
MImts. Module ::= [Imt] ;

terminator Imt

comment "(;" ";)" ;
comment "#" ; ----

JStatic. JImt ::

QIdent ":" Exp "." ;

JDef. Jmt ::= "def" QIdent MTyp MExp "." ;
JInj. Jmt ::= "inj" QIdent MTyp MExp "." ;
JThm. Jmt ::= "thm" QIdent MTyp MExp "." ;
JRules. Jmt ::= [Rule] "." ;

RRule. Rule ::= "[" [Pattbind] "]" Patt "-->" Exp ;
separator nonempty Rule ""

separator Pattbind "," ;

MTNone. MTyp ::= ;

MTExp. MTyp ::= ":" Exp ;

MENone. MExp ::= ;

MEExp. MExp ::= ":=" Exp ;
EIdent. Exp9 ::= QIdent ;

EApp. Exp5 ::= Exp5 Exp6 ;
EAbs. Exp2 ::= Bind "=>" Exp2 ;
EFun. Expl ::= Hypo "->" Expl ;

coercions Exp 9 ;

-- plus some rules for Hypo and Bind

token QIdent (letter | digit | '_" | '!" | 2" | "\"")+

('." (letter | digit | '_* | *!" | 2" | "\"")+)? ;




-- Dedukti.bnf
MImts. Module ::= [Imt] ;
terminator Imt "" ;

comment "(;" ";)" ;
comment "#" ; ----

JStatic. JImt ::= QIdent ":" Exp "." ;

JDef. Jmt ::= "def" QIdent MTyp MExp "."
JInj. Jmt ::= "inj" QIdent MTyp MExp "."
JThm. Jmt ::= "thm" QIdent MTyp MExp "."
JRules. Jmt ::= [Rule] "." ;

RRule. Rule ::= "[" [Pattbind] "]" Patt
separator nonempty Rule "" ;

separator Pattbind "," ;

MTNone. MTyp ::

MTExp. MTyp :: R EXOR

MENone. MExp ::= ;

MEExp. MExp ::= ":=" Exp ;
EIdent. Exp9 ::= QIdent ;

EApp. Exp5 ::= Exp5 Exp6 ;
EAbs. Exp2 ::= Bind "=>" Exp2 ;
EFun. Expl ::= Hypo "->" Expl ;

coercions Exp 9 ;
-- plus some rules for Hypo and Bind

token QIdent (letter | digit | ' ' | '!’
('.' (letter | digit | '_* | "!" | 2" |

n__ym

Exp ;

abstract syntax

case skeleton

pretty-printer

document

https://bnfc.digitalgrammars.com/
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-- Dedukti.bnf

MImts. Module ::= [Imt] ;

terminator Imt

comment "(;" ";)" ;
comment "#" ; ----
JStatic. JImt ::= QIdent ":" Exp "." ;

JDef. Jmt ::= "def" QIdent MTyp MExp
JInj. Jmt ::= "inj" QIdent MTyp MExp
JThm. Jmt ::= "thm" QIdent MTyp MExp

non
E 3
non
E 3
non
E 3

JRules. Jmt ::= [Rule] "." ;

RRule. Rule ::= "[" [Pattbind] "]" Patt "-->" Exp ;
separator nonempty Rule ""

separator Pattbind "," ;

MTNone. MTyp ::= ;

MTExp. MTyp ::= ":" Exp ;

MENone. MExp ::= ;

MEExp. MExp ::= ":=" Exp ;

EIdent. Exp9 ::= QIdent ;

EApp. Exp5 ::= Exp5 Exp6 ;

EAbs. Exp2 ::= Bind "=>" Exp2 ;

EFun. Expl ::= Hypo "->" Expl ;

coercions Exp 9 ;

-- plus some rules for Hypo and Bind

token QIdent (letter | digit | '_* | "!" | 2" | "\"")+
('." (letter | digit | '_* | *!" | 2" | "\"")+)? ;

-- MathCore.gf

abstract MathCore =
Terms, UserConstants
*% {

cat
mt
Exp ;
Exps ;
Prop ;
Kind ;
Hypo ;
[Hypo] ;
Proof ;
Label ;
-- plus more categories

fun
ThmImt : Label -> [Hypo] -> Prop -> Proof -> Imt ;
Axiomdmt : Label -> [Hypo] -> Prop -> Imt ;
DefPropJmt : Label -> [Hypo] -> Prop -> Prop -> Imt ;
DefKindJmt : Label -> [Hypo] -> Kind -> Kind -> JImt ;
DefExpImt : Label -> [Hypo] -> Exp -> Kind -> Exp -> JImt ;
AxiomPropJmt : Label -> [Hypo] -> Prop -> Imt ;
AxiomKindJImt : Label -> [Hypo] -> Kind -> JImt ;
AxiomExpJmt : Label -> [Hypo] -> Exp -> Kind -> JImt ;

AppExp : Exp -> Exps -> Exp ;
AbsExp : [Ident] -> Exp -> Exp ;
TermeExp : Term -> Exp ;

KindExp : Kind -> Exp ;

TypedExp : Exp -> Kind -> Exp ;

AndProp : [Prop] -> Prop ;
OrProp : [Prop] -> Prop ;

IfProp : Prop -> Prop -> Prop ;
IffProp : Prop -> Prop -> Prop ;
NotProp : Prop -> Prop ;

-- plus many more functions




-- Dedukti.bnf

MImts. Module ::= [Imt] ;
terminator]
module AbsDedukti where
comment " (|
comment "# data Tree (a :: Tag) where
MImts :: [Imt] -> Tree 'Module_
JStatic. Jstatic :: QIdent -> Exp -> Tree 'JImt_
IDef. JDef :: QIdent -> MTyp -> MExp -> Tree 'Imt_
JInj. JInj :: QIdent -> MTyp -> MExp -> Tree 'JImt_
IThm. JThm :: QIdent -> MTyp -> MExp -> Tree 'Imt_
JRules. JRules :: [Rule] -> Tree '"JImt_
RRule :: [Pattbind] -> Patt -> Exp -> Tree 'Rule_
RRule. RU MTNone :: Tree 'MTyp_
separator MTExp :: Exp -> Tree 'MTyp_
MENone :: Tree 'MExp_
separator MEExp :: Exp -> Tree 'MEXp_
EIdent :: QIdent -> Tree 'Exp_
MTNone. MT EApp :: Exp -> Exp -> Tree "Exp_
MTExp. MT EAbs :: Bind -> Exp -> Tree 'Exp_
EFun :: Hypo -> Exp -> Tree 'Exp_
MENone. MH BVar :: QIdent -> Tree 'Bind_
MEExp. MEH BTyped :: QIdent -> Exp -> Tree 'Bind_
PBVar :: QIdent -> Tree 'Pattbind_
EIdent. H PBTyped :: QIdent -> Exp -> Tree 'Pattbind_
EApPp. H HExp :: Exp -> Tree 'Hypo_
EAbs. I HVarExp :: QIdent -> Exp -> Tree 'Hypo_
EFun. I HParVarExp :: QIdent -> Exp -> Tree 'Hypo_
Pvar :: QIdent -> Tree 'Patt_
coercions PBracket :: Patt -> Tree 'Patt_
PApp :: Patt -> Patt -> Tree 'Patt_
-- plus sd PBind :: Bind -> Patt -> Tree 'Patt_
QIdent :: String -> Tree 'QIdent_
token QIdg
('." (letter | digit | '_* | *!" | 2" | "\"")+)? ;

-- MathCore.gf

abstract MathCore =
Terms, UserConstants

* % {
cat

mt
Exp ;
Exps ;
Prop ;
Kind ;
Hypo ;
[Hypo] ;
Proof ;
Label ;

-- plus more categories

fun

ThmImt : Label -> [Hypo] -> Prop -> Proof -> Imt ;
Axiomdmt : Label -> [Hypo] -> Prop -> Imt ;

DefPropimt :
DefKindImt :
DefExpImt

AxiomPropJmt :

AxiomKindJImt
AxiomExpJImt

AppExp : Exp

Label -> [Hypo] -> Prop -> Prop -> Imt ;

Label -> [Hypo] -> Kind -> Kind -> JImt ;

Label -> [Hypo] -> Exp -> Kind -> Exp -> Imt ;
Label -> [Hypo] -> Prop -> JImt ;

: Label -> [Hypo] -> Kind -> JImt ;

: Label -> [Hypo] -> Exp -> Kind -> JImt ;

-> Exps -> Exp ;

AbsExp : [Ident] -> Exp -> Exp ;
TermeExp : Term -> Exp ;

KindExp : Kind -> Exp ;

TypedExp : Exp -> Kind -> Exp ;

AndProp : [Prop] -> Prop ;

OrProp : [Prop] -> Prop ;

IfProp : Prop -> Prop -> Prop ;
IffProp : Prop -> Prop -> Prop ;
NotProp : Prop -> Prop ;

-- plus quite a few more functions




-- Dedukti.bnf

MImts. Module :

:= [Imt] ;

-- MathCore.gf

abstract MathCore =
Terms, UserConstants

terminaton
module AbsDedukti where module Informath where
comment " (|
comment "# data Tree (a :: Tag) where data Tree :: * -> * where
MImts :: [Imt] -> Tree 'Module_ GAndAdj :: GListAdj -> Tree GAdj_
JStatic. JStatic :: QIdent -> Exp -> Tree 'JImt_ GComparAdj :: GCompar -> GExp -> Tree GAdj_
JDef. JDef :: QIdent -> MTyp -> MExp -> Tree 'JImt_ GOrAdj :: GListAdj -> Tree GAdj_
JInj. JInj :: QIdent -> MTyp -> MExp -> Tree 'JImt_ GReladjAdj :: GReladj -> GExp -> Tree GAdj_
IThm. JThm :: QIdent -> MTyp -> MExp -> Tree 'JImt_ LexAdj :: String -> Tree GAdj_
JRules. JRules :: [Rule] -> Tree 'Imt_ GIdentsArgKind :: GKind -> GListIdent -> Tree GArgKind_
RRule :: [Pattbind] -> Patt -> Exp -> Tree 'Rule_ GKindArgKind :: GKind -> Tree GArgKind_
RRule. RU MTNone :: Tree 'MTyp_ LexCompar :: String -> Tree GCompar_
separator MTExp :: Exp -> Tree 'MTyp_ LexComparnoun :: String -> Tree GComparnoun_
MENone :: Tree 'MExp_ LexConst :: String -> Tree GConst_
separator MEExp :: Exp -> Tree 'MExp_ GComparEqsign :: GCompar -> Tree GEqsign_
EIdent :: QIdent -> Tree 'Exp_ GComparnounEgsign :: GComparnoun -> Tree GEqsign_ it
MTNone. MT| EApp :: Exp -> Exp -> Tree 'Exp_ GEBinary :: GEgsign -> GTerm -> GTerm -> Tree GEquation_ it
MTExp. MT EAbs :: Bind -> Exp -> Tree 'Exp_ GAbsExp :: GListIdent -> GExp -> Tree GExp_ -> Imt ;
EFun :: Hypo -> Exp -> Tree 'Exp_ GAllIdentsKindExp :: GListIdent -> GKind -> Tree GExp_
MENone. MH BVar :: QIdent -> Tree 'Bind_ GAllKindExp :: GKind -> Tree GExp_
MEExp. MH BTyped :: QIdent -> Exp -> Tree 'Bind_ GAndExp :: GListExp -> Tree GExp_ It ;
PBVar :: QIdent -> Tree 'Pattbind_ GAppExp :: GExp -> GExps -> Tree GEXxp_
EIdent. H PBTyped :: QIdent -> Exp -> Tree 'Pattbind_ GCoercionExp :: GCoercion -> GExp -> Tree GEXp_
EApp. Iz HExp :: Exp -> Tree 'Hypo_ GConstExp :: GConst -> Tree GExp_
EAbs. Iz HVarExp :: QIdent -> Exp -> Tree 'Hypo_ GEveryIdentKindExp :: GIdent -> GKind -> Tree GExp_
EFun. Iz HParVarExp :: QIdent -> Exp -> Tree 'Hypo_ GEveryKindExp :: GKind -> Tree GExp_
PVar :: QIdent -> Tree 'Patt_ GFunListExp :: GFun -> GExps -> Tree GExp_
coercions PBracket :: Patt -> Tree 'Patt_ GIndefIdentKindExp :: GIdent -> GKind -> Tree GExp_
PApp :: Patt -> Patt -> Tree 'Patt_ GIndefKindExp :: GKind -> Tree GExp_
-- plus sq PBind :: Bind -> Patt -> Tree 'Patt_ GIndexedTermExp :: GInt -> Tree GExp_
QIdent :: String -> Tree 'QIdent_
token QIdd -- this is all -- plus quite a few more
('." (letter | digit | '_" | "!" | 2" | "\"")+)? ; NotProp : Prop -> Prop ;

-- plus more functions




-- Dedukti.bnf

MImts. Module :

:= [Imt]

terminaton

comment " (|
comment "#

JStatic.
JDef.
JInj.
JThm.
JRules.

RRule. RY
separator

separator

MTNone. MT|
MTExp. MT|

MENone. MH
MEExp. MH

EIdent.
EApp.
EAbs.
EFun.

m m m m

coercions
-- plus sqg

token QIdg

module AbsDe

data Tree (3

Mimts ::
JStatic
JDef ::
JInj ::
JThm ::
JRules :
RRule ::
MTNone :
MTExp ::
MENone :
MEExp ::
EIdent :
EApp ::
EAbs ::
EFun ::
Bvar ::
BTyped :
PBVar ::
PBTyped
HExp ::
HVarExp
HParVarkE
PVar ::
PBracket
PApp ::
PBind ::
QIdent :

('." (letter | digit |

module Dedukti2Core where

import Dedukti.AbsDedukti
import Informath
import DeduktiOperations

jmt2jmt :: Imt -> GImt
jmt2jmt jmt = case jmt of
JDef ident (MTExp typ) meexp ->
let mexp = case meexp of
MEExp exp -> Just exp
_ -> Nothing
in case (splitType typ, guessCat ident typ) of
((hypos, kind), c) | elem c ["Noun", “"Set"] ->
(maybe (GAxiomKindImt axiomLabel)
(\exp x y -> GDefKindImt definitionLabel x y (exp2kind exp)) mexp)
(GListHypo (hypos2hypos hypos))
(ident2kind ident)
((hypos, kind), c) | elem c ["Name", "Const", "Unknown"] ->
(maybe (GAxiomExpJmt axiomLabel)
(\exp x y z -> GDefExpImt definitionLabel x y z (exp2exp exp)) mexp)
(GListHypo (hypos2hypos hypos))
(ident2exp ident)
(exp2kind kind)

exp2kind :: Exp -> GKind
exp2prop :: Exp -> GProp
exp2exp :: Exp -> GExp
exp2proof :: Exp -> GProof

GAd_
GAd_

> Tree GArgKind_

Fnoun_

Bn_

Pe GEqsign_

> Tree GEquation_
BEXp_

hd -> Tree GExp_

ree GExp_
> Tree GExp_

EXp_
> Tree GExp_

[ai

)
-> Imt ;

mt ;




union A B Exp the union of A and B noun phrase
Nat Kind natural number common noun
divisible 9 3 | Prop 9 is divisible by 3 sentence
oddS @ evenZ Proof 0 is even. Therefore 1 is odd. | text




-- Dedukti.bnf

MJImts. Module ::= [JImt]
terminaton
module AbsDe
comment " (|
comment "# data Tree (q
Mimts ::
JStatic. Jstatic
JDef. JDef ::
JInj. JInj ::
JThm. JThm ::
JRules. JRules :
RRule ::
RRule. Ry MTNone :
separator MTExp ::
MENone :
separator MEExp ::
EIdent :
MTNone. MT| EApp ::
MTExp. MT] EAbs ::
EFun ::
MENone. MH Bvar ::
MEExp. MH BTyped :
PBVar ::
EIdent. H PBTyped
EApp. A HExp ::
EAbs. = HVarExp
EFun. = HParVarkE|
PVar ::
coercions PBracket
PApp ::
-- plus sd PBind ::
QIdent :
token QIdd

('." (letter | digit |

module Dedukti2Core where

impo
impo
impo
jmt2
jmt2

D

JD

exp2
exp2,
exp2
exp2,
iden

iden

QI

module Core2Dedukti where

import Dedukti.AbsDedukti
import Informath
import DeduktiOperations

prop2dedukti :: GProp -> Exp
prop2dedukti prop = case prop of
GProofProp p -> EApp (EIdent (QIdent "Proof")) (prop2dedukti p)
GFalseProp -> propFalse
GIdentProp ident -> EIdent (ident2ident ident)
GAndProp (GListProp props) -> foldll propAnd (map prop2dedukti props)

kind2dedukti :: GKind -> Exp

kind2dedukti kind = case kind of
GElemKind k -> EApp (EIdent (QIdent "Elem")) (kind2dedukti k)
GTermKind (GTIdent ident) -> EIdent (ident2ident ident)
GSetKind (LexSet s) -> EIdent (QIdent (s))

exp2dedukti :: GExp -> Exp
exp2dedukti exp = case exp of
GTermExp (GTNumber (GInt n)) -> int2exp n
GTermExp (GTIdent ident) -> EIdent (ident2ident ident)
GAppExp exp exps ->
foldll EApp (map exp2dedukti (exp : (exps2list exps)))
GAbsExp (GListIdent idents) exp ->
foldr
(\x y -> EAbs (BVar (ident2ident x)) y)
(exp2dedukti exp)
idents

e GArgKind_

sign_
e GEquation_

Tree GExp_

Xp_

e GExp_

e GExp_

[ai

)
-> Imt ;

mt ;




Dealing with identifiers



-- BaseConstants.dk

Set : Type.
Prop : Type.

(; ignored in Dedukti2Core ;)
Elem : Set -> Type.
Proof : Prop -> Type.

(; logical operators, hard-coded in MathCore ;)
false : Prop.

and : (A : Prop) -> (B : Prop) -> Prop.

or : (A : Prop) -> (B : Prop) -> Prop.

if : Prop -> Prop -> Prop.

forall : (A : Set) -> (Elem A -> Prop) -> Prop.
exists : (A : Set) -> (Elem A -> Prop) -> Prop.

def not : Prop -> Prop := A => if A false.
def iff : Prop -> Prop -> Prop :=
A => B => and (if A B) (if B A).

(; constants defined in a lexicon ;)

def Nat : Set := Num.
def Int : Set := Num.
def Rat : Set := Num.
def Real : Set := Num.

Eq : Elem Real -> Elem Real -> Prop.
Lt : Elem Real -> Elem Real -> Prop.
Gt : Elem Real -> Elem Real -> Prop.
Neq : Elem Real -> Elem Real -> Prop.
Leq : Elem Real -> Elem Real -> Prop.
Geq : Elem Real -> Elem Real -> Prop.

plus : (x : Elem Real) -> (y : Elem Real) -> Elem Real.
minus : Elem Real -> Elem Real -> Elem Real.
times : Elem Real -> Elem Real -> Elem Real.




(; BaseConstants.dk ;) # base_constant_data.dkgf

(; constants defined in a lexicon ;) # for translating between Dedukti and GF abstract syntax
Nat : Set. Nat BASE Set natural_Set
Int : Set. Int BASE Set integer_Set
Rat : Set. Rat BASE Set rational_Set
Real : Set. Real BASE Set real_Set

Eq : Elem Real -> Elem Real -> Prop. Eq BASE Compar Eq_Compar
Lt : Elem Real -> Elem Real -> Prop. Lt BASE Compar Lt_Compar
Gt : Elem Real -> Elem Real -> Prop. Gt BASE Compar Gt_Compar
plus : (x : Elem Real) -> (y : Elem Real) -> Elem Real. plus BASE Oper plus_Oper
minus : Elem Real -> Elem Real -> Elem Real. minus BASE Oper minus_Oper
times : Elem Real -> Elem Real -> Elem Real. times BASE Oper times_Oper
even : Elem Int -> Prop. even BASE Adj even_Adj

def odd : Elem Int -> Prop := n => not (even n). odd BASE Adj odd_Adj

# for generating GF linearization rules

#LIN Eng natural_Set = mkSet "N" "natural” number_N

#LIN Fre natural_Set = mkSet L.natural_Set "naturel" nombre_N
#LIN Swe natural_Set = mkSet L.natural_Set "naturlig" tal N

#LIN Eng Lt_Compar = mkCompar "<" "less" "than"

#LIN Fre Lt_Compar = mkCompar "<" (mkAP (mkA "inférieur")) dative

#LIN Swe Lt_Compar = mkCompar "<" "mindre an

#LIN Eng even_Adj = mkAdj "even"
#LIN Fre even_Adj mkAdj "pair"
#LIN Swe even_Adj mkAdj "jamn"

# for converting identifiers from third-party projects

le ALIAS matita Leq




abstract BaseConstants = {

-- GF cat usage example
Noun ; -- Kind -- set
Fam ; -- Kind -> Kind -- list of integers
Adj ; -- Exp -> Prop -- even
Verb ; -- Exp -> EXp -- converge
Reladj ; -- Exp -> Exp -> Prop -- divisible by
Relverb ; -- Exp -> Exp -> Prop -- divide
Relnoun ; -- Exp -> Exp -> Prop -- root of
Name ; -- Exp -- contradiction
Fun ; -- [Exp] -> Exp -- radius of
Label ; -- Exp -- theorem 1
Set ; -- Kind | Term -- integer, Z
Const ; -- Exp | Term -- the empty set, @
Oper ; -- Exp -> Exp -> Exp | Term -- the sum of, +
Compar ; -- EXp -> Exp -> Prop | Formula -- greater than, >

Comparnoun ; -- Exp -> Exp -> Prop | Formula -- a subset of, \sub




def sphenic : Nat -> Prop

(; GF: sphenic number ;)

lexical rule extraction

# from Wikidata

{"0638185": {

"pl": "Liczby sfeniczne",
"de": "sphenische Zahl",
"en": "sphenic number",
"es": "numero esfénico",
"fr": "nombre sphénique",
"zh": "HERE",

"sv": "sfeniskt tal",
"ta": "en..l9euflé eTevur”,
}

sphenic NEW number_theory Adj spenic_Adj

#LIN Eng sphenic_Adj
#LIN Fre sphenic_Adj
#LIN Swe sphenic_Adj

mkAdj "sphenic"
mkAdj "sphénique"
mkAdj "sfenisk"

AR, Building Grammar Libraries for Mathematics and
Avoiding Manual Work.. Presentation at Hausdorff
Center for Mathematics, 2024,
https://www.youtube.com/watch?v=EQ-k_JQ7fDM&t=5s



https://www.youtube.com/watch?v=EQ-k_JQ7fDM&t=5s

Lexicon Extraction from Wikidata



Ingredients
Wikidata: https://www.wikidata.org

- alist of math terms provided by Frederik Schaeffer
- MathGloss of Lucy Horowitz and Valeria de Paiva
- in total, 5381 terms

GF RGL

- smart paradigms for inflection
- syntactic combination rules
- morphological dictionaries

UD parsing

- extract parts of speech, lemmas, and some inflection for unknown words


https://www.wikidata.org

Extraction functions for syntax (using the RGL)

AdjCN : AP -> CN -> CN ; -- continuous function
CompoundN : N -> N -> N ; -- function space
IntCompoundCN : Int -> CN -> CN ; -- 13-cube
NameCompoundCN : PN -> CN -> CN ; -- Lie group

NounIntCN : CN -> Int -> CN ; -- Grinberg graph 42
NounPrepCN : CN -> Adv -> CN ; -- ring of sets
NounGenCN : CN -> NP -> CN ; -- bishop's graph
PositA : A -> AP ; -- uniform

AdAP : AdA -> AP -> AP ; -- almost uniform

AAdAP : A -> AP -> AP ; -- algebraically closed
PastPartAP : V -> AP ; -- connected

PrepNP : Prep -> NP -> Adv ; -- (integration) by parts

-- plus some more functions, 21 functions in total




RGL morphological dictionaries

lin
lin
lin
lin
lin
lin
lin
lin
lin
lin
lin
lin
lin
lin
lin
lin
lin
lin
lin
lin

isotropy_N = mkN "isotropy" "isotropies" ;

israeli_A = mkAMost "israeli" "israelily" ;

israeli N = mkN "israeli" "israelis" ;

issue_N = mkN "issue" "issues" ;

issue_V = mkV "issue" "issued" "issued" ;

issuer N = mkN "issuer" "issuers" ;

isthmian_A = mkAMost "isthmian" "isthmianly" ;
isthmus_N = mkN "isthmus" "isthmuses" ;

italic_A = mkAMost "italic" "italicly" ;

italic N = mkN "italic" "italics" ;

italicize V = mkV "italicize" "italicized" "italicized"
itch_N = mkN "itch" "itches" ;

itch_V = mkV "itch" "itched" "itched" ;

itchy_A = mkA "itchy" "itchier" "itchiest" "itchily" ;
item_Adv = mkAdv "item" ;

item_N = mkN "item" "items" ;

itemize V = mkV "itemize" "
iterate V = mkV "iterate
iteration_N = mkN "iteration

iterative_A = mkAMost "iterative

itemized" "itemized" ;
iterated" "iterated" ;
" "iterations" ;

iteratively" ;

-- English: 56,598 lemmas in total

3

lin
lin

abfieseln_V = prefixV "ab" (regVv "fieseln") ;
abfinden_V = prefixV "ab" (irregV "finden" "findet" "fand"

"fande" "gefunden") ;

lin
lin
lin
lin

"floge

lin

abfindung_N = mkN "Abfindung" ;

abflachen_V = prefixV "ab" (regV "flachen") ;

abflauen_V = prefixV "ab" (regV "flauen") ;

abfliegen V = prefixV "ab" (irregV "fliegen" "fliegt" "flog"

" "geflogen") ;

abfliessen_V = prefixV "ab" (irregV "flieBen" "flieRt" "floss"

"floss" "geflossen") ;

lin
lin
lin
lin
lin
lin
lin
lin
lin
lin

abflug N = mkN "Abflug" "Abflige" masculine ;

abfluss_N = mkN "Abfluss" "Abfliisse" masculine ;
abflusslos_A = regA "abflusslos" ;

abflussrohr_N = mkN "Abflussrohr" "Abflussrohre" neuter ;
abfolge N = mkN "Abfolge" "Abfolgen" feminine ;
abformen_V = prefixV "ab" (regV "formen") ;

abformmasse_N = mkN "Abformmasse" "
abfotografieren_V = prefixV "ab" (regV "fotografieren") ;
abfrage_ N = mkN "Abfrage" "Abfragen" feminine ;
abfragen_V = prefixV "ab" (regV "fragen") ;

Abformmassen"” feminine ;

-- German: 44,229 lemmas in total




Demo: building a lexicon for French

./build lexicon.py (-first]|-added) <fr> <Fre> -from=<Eng>? <STEPNUM>+

- Step 0: preparations

- Step 1: extract wikidata for that language into qglist

- Step 2: parse with UDPipe

- Step 3: use the UDPipe parse to clean up corpus and add to lexicon

- Step 4: build a lexicon extension

- Step 5: parse the terms with the extended lexicon

- Step 6: (if -first) generate GF modules for abstract and the first concrete
- Step 7: (if -add) add a new concrete syntax

- Step 8: test your grammar in GF

https://qgithub.com/aarneranta/informath/tree/main/old/v2/extraction



https://github.com/aarneranta/informath/tree/main/old/v2/extraction

From MathCore to full Informath
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propl110 : (a : Elem Int) -> (c : Elem Int) ->
Proof (and (odd a) (odd c)) -> Proof (forall
Int (b => even (plus (times a b) (times b c)))).

Prop110. For all instances a and c of integers, if we can prove that a is odd and
¢ is odd, then we can prove that for all integers b, the sum of the product of a
and b and the product of b and c is even.




abstract Informath = MathCore ** {

fun

-- use symbolic expressions whenever possible
FormulaProp : Formula -> Prop ;
SetTerm : Set -> Term ;
ConstTerm : Const -> Term ;

-- aggregation

AndAdj : [Adj] -> Adj ;
orAdj : [Adj] -> Adj ;

AndExp : [Exp] -> Exp ;
OrExp : [Exp] -> Exp ;

-- post-quantification

PostQuantProp : Prop -> Exp -> Prop ;

propl110 : (a : Elem Int) -> (c : Elem Int) ->
Proof (and (odd a) (odd c)) -> Proof (forall
Int (b => even (plus (times a b) (times b c)))).

Prop110. For all instances a and c of integers, if we can prove that a is odd and
¢ is odd, then we can prove that for all integers b, the sum of the product of a
and b and the product of b and c is even.

. Propl10. Let a,c € Z. Assume that both a and ¢ are odd. Then for all integers
b, ab + bc is even.

Prop110. sC € Z. Assume that both a and c are odd. Then ab+ bc is even
integers b.




module Core2Informath where
import Informath

nlg :: Opts -> Tree a -> [Tree a]
nlg opts tree = concatMap variations [t, ut, ft, aft, iaft, viaft]
where
t = unparenth tree
uncoerce t
ft = formalize ut
aft = aggregate (flatten ft)
iaft = insitu aft
viaft = varless iaft

insitu :: Tree a -> Tree a
insitu t = case t of
GAllProp (GListArgKind [argkind]) (GAdjProp adj exp) -> case subst argkind exp of
Just (x, kind) -> GAdjProp adj (GAllIdentsKindExp (GListIdent [x]) kind)
_ >t
GAllProp (GListArgKind [argkind]) (GNotAdjProp adj exp) -> case subst argkind exp of
Just (x, kind) -> GAdjProp adj (GNoIdentsKindExp (GListIdent [x]) kind)
_ >t
GExistProp (GListArgKind [argkind]) (GAdjProp adj exp) -> case subst argkind exp of
Just (x, kind) -> GAdjProp adj (GSomeIdentsKindExp (GListIdent [x]) kind)
_ >t
_ -> composOp insitu t

varless :: Tree a -> Tree a

varless t = case t of
GAllIdentsKindExp (GListIdent [_]) kind -> GAllKindExp kind
GNoIdentsKindExp (GListIdent [_]) kind -> GNoKindExp kind
GSomeIdentsKindExp (GListIdent [_]) kind -> GSomeKindExp kind
_ -> composOp varless t

NLG (Natural Language Generation) is
a combination of selected almost
compositional operations.

Another example: in situ quantification
(Qx:A)B(x) = B(QA)

if X occurs exactly once in B:

The variable can optionally be omitted.

B Bringert and A. Ranta, A pattern for almost
compositional functions. Journal of Functional
Programming 18 (5-6), 567-598, 2008.



abstract Informath = MathCore ** {

cat
[Adj] {2} ;
[Exp] {2} ;

fun
-- to use symbolic expressions whenever possible
FormulaProp : Formula -> Prop ;
SetTerm : Set -> Term ;
ConstTerm : Const -> Term ;
ComparEqsign : Compar -> Eqsign ;

-- to remove parentheses around complex propositions
SimpleAndProp : [Prop] -> Prop ;

-- to aggregate adjectives and expressions
AndAdj : [Adj] -> Adj ;

orAdj : [Adj] -> Adj ;

AndExp : [Exp] -> Exp ;
OrExp : [Exp] -> Exp ;

-- in situ quantifiers

AllKindExp : Kind -> Exp ;

prop50 : Proof (forall Nat
(n => not (and (even n) (odd n)))).

is even an
Prop50. For all natural numbers n, n is not both even and odd.

Prop50. No natural number n is both even and odd.

—
=

AllIdentsKindExp : [Ident] -> Kind -> Exp ;

SomeKindExp : Kind -> Exp ;
SomeIdentsKindExp : [Ident] -> Kind -> Exp ;

NoIdentsKindExp : [Ident] -> Kind -> Exp ;
NoKindExp : Kind -> Exp ;

-- miscellaneous alternative expressions

PostQuantProp : Prop -> Exp -> Prop ;

}

Prop50. No natural number is both even and odd.

rop50. We can prove that for all natural numbers n, it is not the case that n



Scoring and ranking alternative phrases

data Scores = Scores {
tree_length :: Int,
tree_depth :: Int,
characters :: Int,
tokens :: Int,
subsequent_dollars :: Int,
initial dollars :: Int,
parses :: Int

}




$ ./RunInformath -ranking -variations -test-ambiguity test/propi10.dk
## showing a sample from 87 results, first and last included

Prop110. Let $a , c \in Z$. Then if $a$ and $c$ are odd, then $a b + b c$ is even for every integer $b$%.
%% (Scores {tree_length = 55, tree_depth = 10, characters = 104, tokens = 40, subsequent_dollars = @, initial_dollars =
@, parses = 2},211)

Prop110. Let $a , c \in Z$. Then $a$ and $c$ are odd, only if $a b + b c$ is even for every integer $b$%.
%% (Scores {tree_length = 59, tree_depth = 10, characters = 110, tokens = 43, subsequent_dollars = 1, initial_dollars =
@, parses = 2},225)

Prop110. Let $a$ and $c$ be integers. Assume that $a$ and $c$ are odd. Then $a b + b c$ is even for every integer $b$.
%% (Scores {tree_length = 53, tree_depth = 11, characters = 118, tokens = 42, subsequent_dollars = @, initial_dollars =
@, parses = 1},225)

Prop110. Let $a$ and $c$ be integers. Assume that $a$ and $c$ are odd. Then for all integers $b$, $a b + b c$ is even.
%% (Scores {tree_length = 55, tree_depth = 11, characters = 118, tokens = 43, subsequent_dollars = 1, initial_dollars =
@, parses = 1},229)

Prop110. For all integers $a$ and $c$, if $a$ is odd and $c$ is odd, then for all integers $b$, $a b + b c$ is even.
%% (Scores {tree_length = 57, tree_depth = 11, characters = 116, tokens = 44, subsequent_dollars = 1, initial_dollars =
@, parses = 1},230)

Propl110. Let $a$ and $c$ be instances of integers. Then we can prove that $a$ is odd and $c$ is odd, only if we can
prove that for all integers $b$, the sum of the product of $a$ and $b$ and the product of $b$ and $c$ is even.

%% (Scores {tree_length = 70, tree_depth = 15, characters = 226, tokens = 72, subsequent_dollars = @, initial_dollars =
@, parses = 3},386)

Prop110. Let $a$ and $c$ be instances of integers. Assume that we can prove that $a$ is odd and $c$ is odd. Then we can
prove that for all integers $b$, the sum of the product of $a$ and $b$ and the product of $b$ and $c$ is even.

%% (Scores {tree_length = 71, tree_depth = 14, characters = 230, tokens = 72, subsequent_dollars = @, initial_dollars =
0, parses = 3},390)



http://prop110.dk

module Informath2Core where

import Informath

data SEnv = SEnv {varlist :: [String]}
initSEnv = SEnv {varlist = []}

newVar :: SEnv -> (GIdent, SEnv)

sem :: SEnv -> Tree a -> Tree a
sem env t = case t of

GAdjProp (GAndAdj (GListAdj adjs)) x ->

let sx = sem env x

in GAndProp (GListProp [GAdjProp adj sx | adj <- adjs])

GAdjProp adj (GEveryKindExp kind) -»>
let (x, env') = newVar env
in sem env'

(GA11lProp (GListArgKind [GIdentsArgKind kind (GListIdent [x])])
(GAdjProp adj (GTermExp (GTIdent x))))

From Informath to Core is simpler:

- deterministic conversion of Informath
extensions to MathCore

- like logical semantics (since
MathCore is an unambiguous syntax
for logic)

- fresh variables must be created for
varless in situ quantifiers



Order is important:

every number is even or odd

— for all numbers x, x is (even or odd)
— for all numbers x, (x is even or x is odd)

mber is odd
for all numbers x, x is odd)

— every nu
— (for all numbe



Demos



all: Informath.pgf Dedukti Agda Coq Lean RunInformath

Informath.pgf:

cd grammars ; gf --make -output-format=haskell -haskell=1lexical --haskell=gadt
-lexical=Name,Noun,Fam,Adj,Rel,Fun,Label,Const,Oper,Compar,Set,Coercion,Relverb,Relno
un,Reladj,Comparnoun,Verb --probs=Informath.probs InformathEng.gf InformathFre.gf
InformathSwe.gf

Dedukti:

cd typetheory ; bnfc -m -p Dedukti --haskell-gadt Dedukti.bnf ; make
Aeda: cd typetheory ; bnfc -m -p Agda --haskell-gadt Agda.bnf ; make
sean cd typetheory ; bnfc -m -p Lean --haskell-gadt Lean.bnf ; make
o cd typetheory ; bnfc -m -p Coq --haskell-gadt Coq.bnf ; make
RunInformath:

ghc -package gf RunInformath.hs

make



demo:

./RunInformath
./RunInformath
./RunInformath
./RunInformath
./RunInformath
./RunInformath

-lang=Fre test/exx.dk
-lang=Swe test/exx.dk
-lang=Eng test/exx.dk
-lang=Eng test/exx.dk >exx.txt
-lang=Eng exx.txt

-lang=Eng test/gflean-data.txt

cat BaseConstants.dk test/exx.dk >bexx.dk
dk check bexx.dk

./RunInformath

-to-agda test/exx.dk >exx.agda

agda --prop exx.agda

./RunInformath

-to-coq test/exx.dk >exx.v

cat BaseConstants.v exx.v >bexx.v

coqc bexx.v
./RunInformath

-to-lean test/exx.dk >exx.lean

cat BaseConstants.lean exx.lean >bexx.lean

lean bexx.lean

./RunInformath
echo "consider

./RunInformath
echo "consider

-to-latex-file -variations test/topl100.dk >out/tople@.tex
pdflatex out/topl00.tex"

-to-latex-file -variations test/sets.dk >out/sets.tex
pdflatex out/sets.tex"

make demo



Generating synthetic data

For those who are interested just in the generation of synthetic data, the following commands
(after building Informath with make) can do it: assuming that you have a . dk file available, build a
. jsonl file with all conversions of each Dedukti judgement:

$ ./RunInformath -parallel <file>.dk > <file>.jsonl

After that, select the desired formal and informal languages to generate a new . jsonl data with
just those pairs:

$ python3 test/jsonltest.py <file.jsonl> <formal> <informal>

The currently available values of <formal> and <informal> are the keys in <file>.jsonl - for
example, agda and InformathEng, respectively.

https://qgithub.com/aarneranta/informath/
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Loss
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Figure 4.5: Training losses of fine-tuned models at different epochs.

Table 4.5: Model performance at different training epochs . . )
Pei Huang, Autoformalization for

Model BLEU-4 ROUGE-1/2/L  Syntax Err.% Score Agda via Fine-tuning Large Language
Baseline 32.90  54.17 / 21.99 / 42.76 98.43 93.96 Models, MSc thesis at Chalmers,
M_epoch_1 76.16  89.03 / 74.94 / 83.22 7.93 83.60 2025

M__epoch_3 77.78 89.86 / 76.63 / 84.37 20.48 80.14




Translate the following latex InformathEng translation problems (each is on one line) to deducti.

Do it analogously to the following extraction examples. Put the output all into one piece of text, preceded always by input (as in the
examples).

BEGIN EXAMPLES

{"InformathEng": "thm58 . let $ A$S beaset.let$n\inN$.then$ |A|=n$, only if for all natural numbers $k $ ,if $k\\leqn $ , then $ |
\\binom{ AK k} | =\\binom{n { k}$ ." "dedukti": "thm58 : (A: Set ) -> ( n: Elem Nat ) -> Proof ( Eq ( cardinality A) n ) -> ( k : Elem Nat )
-> Proof ( Leq k n ) -> Proof ( Eq ( cardinality ( combinationsFromSet Ak ) ) ( binomialnk ) ) ."}

{— ...

END EXAMPLES

BEGIN TRANSLATION PROBLEMS

{"InformathEng": "Thm01f . there exists no natural number $ p $ , such that there exists a natural number $ q $ , such that the square of $ p
$ is equal to the product of $ 2 $ and the square of $ g $ .", "dedukti":

{"InformathEng": "thm52 . let $ A $ be a set . then we can prove that $ A $ is finite , only if we can prove that the cardinality of the power set
of $ A$ is equal to the exponentiation of $ 2 $ and the cardinality of $ A $ .", "dedukti":

EN.[.). TRANSLATION PROBLEMS

Sure, here are the translations of the given InformathEng statements to Dedukti:

input: {"InformathEng": "Thm@lf . there exists no natural number $ p $ , such that
there exists a natural number $ g $ , such that the square of $ p $ is equal to the

product of $ 2 $ and the square of $ q $ .", "dedukti": "Thme@lf : Proof ( not ( exists
Nat ( p => exists Nat ( g => Eq ( square p ) ( times 2 ( square q ) ) ) ) ) ) ."}

https://chat.mistral.ai/chat/60f44ab2-d86f-4ec2-b382-d941d471eef0 by Josef Urban, 13 July 2025
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Conclusion



Symbolic informalization can be

natural and fluent
- by extending CNL towards the full language of mathematics

feasible to develop
- by Dedukti, GF, and rule extraction

shared by different formal and informal languages
- by Dedukti and GF interlinguas

inverted to autoformalization
- natively, by reversilibility of GF
- as backup, by fine-tuned LLM + feedback informalization



Symbolic informalization is

based on well-understood compiler-like techniques

potentially 100% reliable

fast and energy-efficient

a natural extension of formal proof techniques



Building on the CNL tradition, the new things in Informath are

wider coverage of alternative verbalizations

multilinguality

guaranteed grammaticality via GF RGL

syntactic ambiguity allowed, resolved semantically



Some future work



Build up a multilingual lexicon with terms and definitions

- from Wikidata
- from Agda, Lean, Rocq, HOL-light, Isabelle, Mizar, ...

Show competitive results in autoformalization

- learn from definitions, test with theorem statements
Improve the verbalization of proofs

- combine proof terms with scripts to identify crucial steps
Create APIs to connect with interactive proof systems

- use as a library or a plugin component



Don't guess if you know.

https://github.com/aarneranta/informath
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