
Informath:
Interlingual Informalization and Autoformalization

with Dedukti and GF
LORIA Nancy 24 July 2025

(v4 FAU Erlangen 18 July 2025,
v3 CIIRC, TU Prague 14 July 2025,

v2 Chalmers/GU 25 April 2025,
v1 LMF/ENS Saclay 10 April 2025)

Aarne Ranta
aarne.ranta@cse.gu.se

mailto:aarne.ranta@cse.gu.se

Prologue:
AlphaProof and Autoformalization

https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/

AI achieves silver-medal standard solving International Mathematical
Olympiad problems

https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/

https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/

"First, the problems were manually translated into formal mathematical language for
our systems to understand."

AI achieves silver-medal standard solving International Mathematical
Olympiad problems

https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/

(In)formalization, symbolic CNL
Trybulec 1973: Mizar

Coscoy, Kahn & Théry 1994: Coq proofs to text

Wenzel 1999: Isabelle-Isar

Hallgren & Ranta 2000: GF-Alfa (Agda)

Paskevich 2007: ForTheL

Cramer, Koepke & al 2009: Naproche

Humayoun & Raffalli 2011: MathNat

Pathak 2023: GF-Lean

Massot 2024: Verbose-Lean4

Kelber, Kohlhase, Schaefer & Schütz: Flexiformal mathematics, 2025

formal informal

informalization

 formalization

total

partial

formal informal

informalization (basic CNL)

 formalization (basic CNL)

to one to many

total

partial

informalization (Informath)

formalization (Informath)

Autoformalization, neural
Wang, Kaliczyk & Urban 2018: NMT and Mizar

Wu, Jiang, Li, Rabe, Staats, Jamnik & Szegedy 2022 : autoformalization with LLM

formal informal

informalization (symbolic)

 formalization (symbolic)

certain uncertain

total

partial

 formalization (neural)

informalization (neural)

Don't guess if you know.

- there is no essential need for neural informalization
- (except its allegedly low cost)

- However, (auto)formalization may require guessing

- symbolic informalization has things to contribute even here
- synthetic data generation
- verification feedback

NeurIPS 2024,

- "informalisation is much easier than formalisation"

- uses an GPT-4 to produce the dataset MMA to fine-tune LLaMA
- ~70% "more or less acceptable"

- resulting autoformalization:
- 16-18% "acceptable with minimal corrections"

- symbolic informalization

https://arxiv.org/abs/2311.03755

"symbolic informalisation tools

- result in natural language content that lacks the inherent
diversity and flexibility in expression: they are rigid and not
natural-language-like.

- symbolic informalisation tools are hard to design and implement

- They also differ a lot for different formal languages, hence the
approach is not scalable for multiple formal languages. "

https://arxiv.org/abs/2311.03755

Informath

The goal of Informath

Symbolic informalization that
 has

- results in natural language content that lacks the inherent
diversity and flexibility in expression: they are rigid and not
natural-language-like.
 feasible

- symbolic informalisation tools are hard to design and implement
with proper methods

 can be shared
- They also differ a lot for different formal languages, hence the

approach is not scalable for multiple formal languages. And
even for multiple natural languages.

Agda:

postulate prop110 :
 (a : Int) -> (c : Int) ->
 and (odd a) (odd c) -> all Int (\ b ->
 even (plus (times a b) (times b c)))

Rocq:

prop110 : forall a : Int, forall c : Int,
 (odd a /\ odd c -> forall b : Int,

 even (a * b + b * c)) .

Lean:

prop110 (a c : Int) (x : odd a ∧ odd c)

:

 ∀ b : Int, even (a * b + b * c)

Agda:

postulate prop110 :
 (a : Int) -> (c : Int) ->
 and (odd a) (odd c) -> all Int (\ b ->
 even (plus (times a b) (times b c)))

Rocq:

prop110 : forall a : Int, forall c : Int,
 (odd a /\ odd c -> forall b : Int,

 even (a * b + b * c)) .

Lean:

prop110 (a c : Int) (x : odd a ∧ odd c)

:

 ∀ b : Int, even (a * b + b * c)

Dedukti:

prop110 : (a : Elem Int) ->
 (c : Elem Int) ->
 Proof (and (odd a)
 (odd c)) ->
 Proof (forall Int

 (b => even (plus

 (times a b) (times b c)))).

Agda:

postulate prop110 :
 (a : Int) -> (c : Int) ->
 and (odd a) (odd c) -> all Int (\ b ->
 even (plus (times a b) (times b c)))

Rocq:

prop110 : forall a : Int, forall c : Int,
 (odd a /\ odd c -> forall b : Int,

 even (a * b + b * c)) .

Lean:

prop110 (a c : Int) (x : odd a ∧ odd c)

:

 ∀ b : Int, even (a * b + b * c)

Dedukti:

prop110 : (a : Elem Int) ->
 (c : Elem Int) ->
 Proof (and (odd a)
 (odd c)) ->
 Proof (forall Int

 (b => even (plus

 (times a b) (times b c)))).

GF:

AxiomJmt (StrLabel "prop110")
(ConsHypo (LetFormulaHypo (FElem
(ConsTerm (TIdent (StrIdent "a"))
(BaseTerm (TIdent (StrIdent "c"))))
(SetTerm integer_Set))) (ConsHypo
(PropHypo (AdjProp odd_Adj (AndExp
(BaseExp (TermExp (TIdent (StrIdent
"a"))) (TermExp (TIdent (StrIdent
"c"))))))) BaseHypo)) (PostQuantProp
(AdjProp even_Adj (TermExp
(AppOperTerm plus_Oper (TTimes (TIdent
(StrIdent "a")) (TIdent (StrIdent
"b"))) (TTimes (TIdent (StrIdent "b"))
(TIdent (StrIdent "c"))))))
(AllIdentsKindExp (BaseIdent (StrIdent
"b")) (SetKind integer_Set)))

Interlude: GF

GF = Grammatical Framework
GF = Logical Framework + Grammar

First release 1998 at Xerox Research Centre Europe, Grenoble

Based on earlier work with ALF (Another LF, predecessor of Agda) 1992

https://www.grammaticalframework.org/

https://www.grammaticalframework.org/

Abstract and concrete syntax: judgements
-- abstract syntax = LF

cat C Γ

fun f : T

def t = u

-- concrete syntax

lincat C = L

lin f = t

param P = C | … | C

oper h : T = t

Abstract and concrete syntax: examples
-- abstract syntax = LF

cat Prop ; Term

fun commutative : Term -> Prop

def commutative f =

 forall Obj (\x, y ->

 Id Obj (f x y) (f y x)

-- concrete syntax

lincat Prop, Term = Str

lin commutative x =

 x ++ "is commutative"

Concrete syntax: parameters and operations
-- abstract syntax = LF

cat Prop ; Term

fun commutative : Term -> Prop

-- concrete syntax for English

lincat

 Prop = Str

 Term = {s : Str ; n : Number}

lin commutative x = x.s ++

 copula ! x.n ++ "commutative"

param

 Number = Sg | Pl

oper

 copula : Number => Str =

 table {Sg => "is" ; Pl => "are"}

Concrete syntax: parameters and operations
-- abstract syntax = LF

cat Prop ; Term

fun commutative : Term -> Prop

-- concrete syntax for French

lincat

 Prop = Mood => Str

 Term = {s : Str ; g : Gender ; n : Number}

lin commutative x = \\m => x.s ++

 copula ! m ! n ++

 mkA "commutatif" ! x.g ! x.n

param

 Number = Sg | Pl

 Gender = Masc | Fem

 Mood = Ind | Subj

oper

 mkA : Str -> Gender => Number = Str = …

 copula : Mood => Number => Str = …

Reversible mappings

Abstract syntax

Concrete syntax

linearization parsing

Multilingual grammars

Abstract syntax

Concrete syntax
2:

English

linearization parsing

Concrete syntax 1:
Lean

Concrete syntax 3:
French

https://commons.wikimedia.org/wiki/Maps_of_the_world#/media/File:BlankMap-World-noborders.png

Eng

Fre

Fin

Swe

Nor

Dan

Dut Ger

Est
Lav

Pol

Bul
Gre

Ita

Mlt

Cat

Spa

Por

Afr

Chi

Jpn

Tha

Hin

Nep

Rus

Urd

Pnb
SndPes

Ice

Mon
Ron

Tur

Amh

Ara

Som

Kam

Tsn

Eus

Nno

Lat

Grc
HebIna

Nyn

Xho

Zul

Swa

Cze
Slo

Kor

Hun
Hrv

May

RGL = Resource Grammars Library, created by the GF community 2001-2025

Lit

https://commons.wikimedia.org/wiki/Maps_of_the_world#/media/File:BlankMap-World-noborders.png

RGL =
Resource
Grammar
Library

morphology and
syntax for ~50
languages

http://www.grammaticalframework.org/lib/doc/synopsis/

-- inflection of French adjectives, slightly simplified

mkA : Str -> A = \adj ->
 case adj of {
 _ + "eux"=> <adj, init adj + "se", adj, init adj + "ses"> ;
 _ + "al" => <adj, adj + "e", init adj + "ux", adj + "es"> ;
 _ + "en" => <adj, adj + "ne", adj + "s", adj + "nes"> ;
 _ + "el" => <adj, adj + "le", adj + "s", adj + "les"> ;
 x + "er" => <adj, x + "ère", adj + "s", x + "ères"> ;
 _ + "if" => <adj, init adj + "ve", adj + "s", init adj + "ves"> ;
 _ + "s" => <adj, adj + "e", adj, adj + "es"> ;
 _ + "e" => <adj, adj, adj + "s", adj + "s"> ;
 _ => <adj, adj + "e", adj + "s", adj + "es">
 } ;

http://www.grammaticalframework.org/lib/doc/synopsis/

RGL

syntactic combination
API

shared by all
languages in the
library

usable as functor
interface + instances

http://www.grammaticalframework.org/lib/
doc/synopsis/

http://www.grammaticalframework.org/lib/doc/synopsis/
http://www.grammaticalframework.org/lib/doc/synopsis/

Concrete syntax: functor over the RGL
-- abstract syntax code

cat Prop ; Term
fun commutative : Term -> Prop

-- shared functor code

lincat
 Prop = Cl
 Term = NP

lin
 commutative x =
 mkCl x commutative_A

-- added code for each language

-- Eng

 commutative_A =

 mkA "commutative"

-- Fre

 commutative_A =

 mkA "commutatif"

-- Fin

 commutative_A =

 mkA "kommutatiivinen"

Context-free expansions of 'commutative : Term -> Prop'
Prop_1_0 ::= Term_5 "is" "commutative"
Prop_1_0 ::= Term_6 "are" "commutative"
Prop_1_2 ::= "are" Term_6 "commutative"
Prop_1_2 ::= "is" Term_5 "commutative"
Prop_1_3 ::= Term_5 "is" "not" "commutative"
Prop_1_3 ::= Term_6 "are" "not" "commutative"
Prop_1_5 ::= "are" Term_6 "not" "commutative"
Prop_1_5 ::= "is" Term_5 "not" "commutative"
Prop_1_6 ::= Term_5 "isn't" "commutative"
Prop_1_6 ::= Term_6 "aren't" "commutative"
Prop_1_7 ::= Term_5 "isn't" "commutative"
Prop_1_7 ::= Term_6 "aren't" "commutative"
Prop_1_8 ::= "aren't" Term_6 "commutative"
Prop_1_8 ::= "isn't" Term_5 "commutative"

Context-free expansions of 'commutative : Term -> Prop'
Prop_1_0 ::= Term_5 "is" "commutative"
Prop_1_0 ::= Term_6 "are" "commutative"
Prop_1_2 ::= "are" Term_6 "commutative"
Prop_1_2 ::= "is" Term_5 "commutative"
Prop_1_3 ::= Term_5 "is" "not" "commutative"
Prop_1_3 ::= Term_6 "are" "not" "commutative"
Prop_1_5 ::= "are" Term_6 "not" "commutative"
Prop_1_5 ::= "is" Term_5 "not" "commutative"
Prop_1_6 ::= Term_5 "isn't" "commutative"
Prop_1_6 ::= Term_6 "aren't" "commutative"
Prop_1_7 ::= Term_5 "isn't" "commutative"
Prop_1_7 ::= Term_6 "aren't" "commutative"
Prop_1_8 ::= "aren't" Term_6 "commutative"
Prop_1_8 ::= "isn't" Term_5 "commutative"

Prop_1_0 ::= Term_1 "est" "commutatif"
Prop_1_0 ::= Term_2 "n'est" "commutatif"
Prop_1_0 ::= Term_3 "sont" "commutatifs"
Prop_1_0 ::= Term_4 "ne" "sont" "commutatifs"
Prop_1_1 ::= Term_1 "soit" "commutatif"
Prop_1_1 ::= Term_2 "ne" "soit" "commutatif"
Prop_1_1 ::= Term_3 "soient" "commutatifs"
Prop_1_1 ::= Term_4 "ne" "soient" "commutatifs"
Prop_1_10 ::= "n'est" Term_1 "commutatif"
Prop_1_10 ::= "n'est" Term_2 "commutatif"
Prop_1_10 ::= "ne" "sont" Term_3 "commutatifs"
Prop_1_10 ::= "ne" "sont" Term_4 "commutatifs"
Prop_1_11 ::= "ne" "soient" Term_3 "commutatifs"
Prop_1_11 ::= "ne" "soient" Term_4 "commutatifs"
Prop_1_11 ::= "ne" "soit" Term_1 "commutatif"
Prop_1_11 ::= "ne" "soit" Term_2 "commutatif"
Prop_1_2 ::= Term_1 "n'est" "pas" "commutatif"
Prop_1_2 ::= Term_2 "n'est" "pas" "commutatif"
Prop_1_2 ::= Term_3 "ne" "sont" "pas" "commutatifs"
Prop_1_2 ::= Term_4 "ne" "sont" "pas" "commutatifs"
Prop_1_3 ::= Term_1 "ne" "soit" "pas" "commutatif"
Prop_1_3 ::= Term_2 "ne" "soit" "pas" "commutatif"
Prop_1_3 ::= Term_3 "ne" "soient" "pas" "commutatifs"
Prop_1_3 ::= Term_4 "ne" "soient" "pas" "commutatifs"
Prop_1_4 ::= Term_1 "n'est" "commutatif"
Prop_1_4 ::= Term_2 "n'est" "commutatif"
Prop_1_4 ::= Term_3 "ne" "sont" "commutatifs"
Prop_1_4 ::= Term_4 "ne" "sont" "commutatifs"
Prop_1_5 ::= Term_1 "ne" "soit" "commutatif"
Prop_1_5 ::= Term_2 "ne" "soit" "commutatif"
Prop_1_5 ::= Term_3 "ne" "soient" "commutatifs"
Prop_1_5 ::= Term_4 "ne" "soient" "commutatifs"
Prop_1_6 ::= "est" Term_1 "commutatif"
Prop_1_6 ::= "n'est" Term_2 "commutatif"
Prop_1_6 ::= "ne" "sont" Term_4 "commutatifs"
Prop_1_6 ::= "sont" Term_3 "commutatifs"
Prop_1_7 ::= "ne" "soient" Term_4 "commutatifs"
Prop_1_7 ::= "ne" "soit" Term_2 "commutatif"
Prop_1_7 ::= "soient" Term_3 "commutatifs"
Prop_1_7 ::= "soit" Term_1 "commutatif"
Prop_1_8 ::= "n'est" "pas" Term_1 "commutatif"
Prop_1_8 ::= "n'est" "pas" Term_2 "commutatif"
Prop_1_8 ::= "ne" "sont" "pas" Term_3 "commutatifs"
Prop_1_8 ::= "ne" "sont" "pas" Term_4 "commutatifs"
Prop_1_9 ::= "ne" "soient" "pas" Term_3 "commutatifs"
Prop_1_9 ::= "ne" "soient" "pas" Term_4 "commutatifs"
Prop_1_9 ::= "ne" "soit" "pas" Term_1 "commutatif"
Prop_1_9 ::= "ne" "soit" "pas" Term_2 "commutatif"

Back to Informath

Dedukti Informath.gf

informalization

formalization

formal
Agda

Rocq

Lean

English

French

Swedish

informal

to one to many

total

partial

even 4
not (even 5)

4 is even
5 is not even

informalization; GF

 autoformalization: GF

even 4
not (even 5)

NO PARSE

4 is even
5 is not even

5 can't be even

informalization; GF

 autoformalization: GF

even 4
not (even 5)

NO PARSE

even 5

4 is even
5 is not even

5 can't be even

informalization; GF

 autoformalization: GF

 autoformalization: LLM

even 4
not (even 5)

NO PARSE

even 5

4 is even
5 is not even

5 can't be even

5 is even

informalization; GF

 autoformalization: GF

 autoformalization: LLM

feedback informalization: GF

Formal
mathematics

Natural
language

informalization; GF

 autoformalization: GF

 autoformalization: LLM

feedback informalization: GF

Vision:
- the formal system is a black box that performs verification
- humans communicate with it in natural language

Mapping between Dedukti and GF

-- Dedukti.bnf

MJmts. Module ::= [Jmt] ;

terminator Jmt "" ;

comment "(;" ";)" ;
comment "#" ; ----

JStatic. Jmt ::= QIdent ":" Exp "." ;
JDef. Jmt ::= "def" QIdent MTyp MExp "." ;
JInj. Jmt ::= "inj" QIdent MTyp MExp "." ;
JThm. Jmt ::= "thm" QIdent MTyp MExp "." ;
JRules. Jmt ::= [Rule] "." ;

RRule. Rule ::= "[" [Pattbind] "]" Patt "-->" Exp ;
separator nonempty Rule "" ;

separator Pattbind "," ;

MTNone. MTyp ::= ;
MTExp. MTyp ::= ":" Exp ;

MENone. MExp ::= ;
MEExp. MExp ::= ":=" Exp ;

EIdent. Exp9 ::= QIdent ;
EApp. Exp5 ::= Exp5 Exp6 ;
EAbs. Exp2 ::= Bind "=>" Exp2 ;
EFun. Exp1 ::= Hypo "->" Exp1 ;

coercions Exp 9 ;

–- plus some rules for Hypo and Bind

token QIdent (letter | digit | '_' | '!' | '?' | '\'')+
('.' (letter | digit | '_' | '!' | '?' | '\'')+)? ;

https://bnfc.digitalgrammars.com/

-- Dedukti.bnf

MJmts. Module ::= [Jmt] ;

terminator Jmt "" ;

comment "(;" ";)" ;
comment "#" ; ----

JStatic. Jmt ::= QIdent ":" Exp "." ;
JDef. Jmt ::= "def" QIdent MTyp MExp "." ;
JInj. Jmt ::= "inj" QIdent MTyp MExp "." ;
JThm. Jmt ::= "thm" QIdent MTyp MExp "." ;
JRules. Jmt ::= [Rule] "." ;

RRule. Rule ::= "[" [Pattbind] "]" Patt "-->" Exp ;
separator nonempty Rule "" ;

separator Pattbind "," ;

MTNone. MTyp ::= ;
MTExp. MTyp ::= ":" Exp ;

MENone. MExp ::= ;
MEExp. MExp ::= ":=" Exp ;

EIdent. Exp9 ::= QIdent ;
EApp. Exp5 ::= Exp5 Exp6 ;
EAbs. Exp2 ::= Bind "=>" Exp2 ;
EFun. Exp1 ::= Hypo "->" Exp1 ;

coercions Exp 9 ;

–- plus some rules for Hypo and Bind

token QIdent (letter | digit | '_' | '!' | '?' | '\'')+
('.' (letter | digit | '_' | '!' | '?' | '\'')+)? ;

https://bnfc.digitalgrammars.com/

-- Dedukti.bnf

MJmts. Module ::= [Jmt] ;

terminator Jmt "" ;

comment "(;" ";)" ;
comment "#" ; ----

JStatic. Jmt ::= QIdent ":" Exp "." ;
JDef. Jmt ::= "def" QIdent MTyp MExp "." ;
JInj. Jmt ::= "inj" QIdent MTyp MExp "." ;
JThm. Jmt ::= "thm" QIdent MTyp MExp "." ;
JRules. Jmt ::= [Rule] "." ;

RRule. Rule ::= "[" [Pattbind] "]" Patt "-->" Exp ;
separator nonempty Rule "" ;

separator Pattbind "," ;

MTNone. MTyp ::= ;
MTExp. MTyp ::= ":" Exp ;

MENone. MExp ::= ;
MEExp. MExp ::= ":=" Exp ;

EIdent. Exp9 ::= QIdent ;
EApp. Exp5 ::= Exp5 Exp6 ;
EAbs. Exp2 ::= Bind "=>" Exp2 ;
EFun. Exp1 ::= Hypo "->" Exp1 ;

coercions Exp 9 ;

–- plus some rules for Hypo and Bind

token QIdent (letter | digit | '_' | '!' | '?' | '\'')+
('.' (letter | digit | '_' | '!' | '?' | '\'')+)? ;

-- MathCore.gf

abstract MathCore =
 Terms, UserConstants
 ** {
cat
 Jmt ;
 Exp ;
 Exps ;
 Prop ;
 Kind ;
 Hypo ;
 [Hypo] ;
 Proof ;
 Label ;
 -- plus more categories
fun
 ThmJmt : Label -> [Hypo] -> Prop -> Proof -> Jmt ;
 AxiomJmt : Label -> [Hypo] -> Prop -> Jmt ;
 DefPropJmt : Label -> [Hypo] -> Prop -> Prop -> Jmt ;
 DefKindJmt : Label -> [Hypo] -> Kind -> Kind -> Jmt ;
 DefExpJmt : Label -> [Hypo] -> Exp -> Kind -> Exp -> Jmt ;
 AxiomPropJmt : Label -> [Hypo] -> Prop -> Jmt ;
 AxiomKindJmt : Label -> [Hypo] -> Kind -> Jmt ;
 AxiomExpJmt : Label -> [Hypo] -> Exp -> Kind -> Jmt ;

 AppExp : Exp -> Exps -> Exp ;
 AbsExp : [Ident] -> Exp -> Exp ;
 TermExp : Term -> Exp ;
 KindExp : Kind -> Exp ;
 TypedExp : Exp -> Kind -> Exp ;

 AndProp : [Prop] -> Prop ;
 OrProp : [Prop] -> Prop ;
 IfProp : Prop -> Prop -> Prop ;
 IffProp : Prop -> Prop -> Prop ;
 NotProp : Prop -> Prop ;
 -- plus many more functions

-- Dedukti.bnf

MJmts. Module ::= [Jmt] ;

terminator Jmt "" ;

comment "(;" ";)" ;
comment "#" ; ----

JStatic. Jmt ::= QIdent ":" Exp "." ;
JDef. Jmt ::= "def" QIdent MTyp MExp "." ;
JInj. Jmt ::= "inj" QIdent MTyp MExp "." ;
JThm. Jmt ::= "thm" QIdent MTyp MExp "." ;
JRules. Jmt ::= [Rule] "." ;

RRule. Rule ::= "[" [Pattbind] "]" Patt "-->" Exp ;
separator nonempty Rule "" ;

separator Pattbind "," ;

MTNone. MTyp ::= ;
MTExp. MTyp ::= ":" Exp ;

MENone. MExp ::= ;
MEExp. MExp ::= ":=" Exp ;

EIdent. Exp9 ::= QIdent ;
EApp. Exp5 ::= Exp5 Exp6 ;
EAbs. Exp2 ::= Bind "=>" Exp2 ;
EFun. Exp1 ::= Hypo "->" Exp1 ;

coercions Exp 9 ;

–- plus some rules for Hypo and Bind

token QIdent (letter | digit | '_' | '!' | '?' | '\'')+
('.' (letter | digit | '_' | '!' | '?' | '\'')+)? ;

-- MathCore.gf

abstract MathCore =
 Terms, UserConstants
 ** {
cat
 Jmt ;
 Exp ;
 Exps ;
 Prop ;
 Kind ;
 Hypo ;
 [Hypo] ;
 Proof ;
 Label ;
 -- plus more categories
fun
 ThmJmt : Label -> [Hypo] -> Prop -> Proof -> Jmt ;
 AxiomJmt : Label -> [Hypo] -> Prop -> Jmt ;
 DefPropJmt : Label -> [Hypo] -> Prop -> Prop -> Jmt ;
 DefKindJmt : Label -> [Hypo] -> Kind -> Kind -> Jmt ;
 DefExpJmt : Label -> [Hypo] -> Exp -> Kind -> Exp -> Jmt ;
 AxiomPropJmt : Label -> [Hypo] -> Prop -> Jmt ;
 AxiomKindJmt : Label -> [Hypo] -> Kind -> Jmt ;
 AxiomExpJmt : Label -> [Hypo] -> Exp -> Kind -> Jmt ;

 AppExp : Exp -> Exps -> Exp ;
 AbsExp : [Ident] -> Exp -> Exp ;
 TermExp : Term -> Exp ;
 KindExp : Kind -> Exp ;
 TypedExp : Exp -> Kind -> Exp ;

 AndProp : [Prop] -> Prop ;
 OrProp : [Prop] -> Prop ;
 IfProp : Prop -> Prop -> Prop ;
 IffProp : Prop -> Prop -> Prop ;
 NotProp : Prop -> Prop ;
 -- plus quite a few more functions

module AbsDedukti where

data Tree (a :: Tag) where
 MJmts :: [Jmt] -> Tree 'Module_
 JStatic :: QIdent -> Exp -> Tree 'Jmt_
 JDef :: QIdent -> MTyp -> MExp -> Tree 'Jmt_
 JInj :: QIdent -> MTyp -> MExp -> Tree 'Jmt_
 JThm :: QIdent -> MTyp -> MExp -> Tree 'Jmt_
 JRules :: [Rule] -> Tree 'Jmt_
 RRule :: [Pattbind] -> Patt -> Exp -> Tree 'Rule_
 MTNone :: Tree 'MTyp_
 MTExp :: Exp -> Tree 'MTyp_
 MENone :: Tree 'MExp_
 MEExp :: Exp -> Tree 'MExp_
 EIdent :: QIdent -> Tree 'Exp_
 EApp :: Exp -> Exp -> Tree 'Exp_
 EAbs :: Bind -> Exp -> Tree 'Exp_
 EFun :: Hypo -> Exp -> Tree 'Exp_
 BVar :: QIdent -> Tree 'Bind_
 BTyped :: QIdent -> Exp -> Tree 'Bind_
 PBVar :: QIdent -> Tree 'Pattbind_
 PBTyped :: QIdent -> Exp -> Tree 'Pattbind_
 HExp :: Exp -> Tree 'Hypo_
 HVarExp :: QIdent -> Exp -> Tree 'Hypo_
 HParVarExp :: QIdent -> Exp -> Tree 'Hypo_
 PVar :: QIdent -> Tree 'Patt_
 PBracket :: Patt -> Tree 'Patt_
 PApp :: Patt -> Patt -> Tree 'Patt_
 PBind :: Bind -> Patt -> Tree 'Patt_
 QIdent :: String -> Tree 'QIdent_

-- Dedukti.bnf

MJmts. Module ::= [Jmt] ;

terminator Jmt "" ;

comment "(;" ";)" ;
comment "#" ; ----

JStatic. Jmt ::= QIdent ":" Exp "." ;
JDef. Jmt ::= "def" QIdent MTyp MExp "." ;
JInj. Jmt ::= "inj" QIdent MTyp MExp "." ;
JThm. Jmt ::= "thm" QIdent MTyp MExp "." ;
JRules. Jmt ::= [Rule] "." ;

RRule. Rule ::= "[" [Pattbind] "]" Patt "-->" Exp ;
separator nonempty Rule "" ;

separator Pattbind "," ;

MTNone. MTyp ::= ;
MTExp. MTyp ::= ":" Exp ;

MENone. MExp ::= ;
MEExp. MExp ::= ":=" Exp ;

EIdent. Exp9 ::= QIdent ;
EApp. Exp5 ::= Exp5 Exp6 ;
EAbs. Exp2 ::= Bind "=>" Exp2 ;
EFun. Exp1 ::= Hypo "->" Exp1 ;

coercions Exp 9 ;

–- plus some rules for Hypo and Bind

token QIdent (letter | digit | '_' | '!' | '?' | '\'')+
('.' (letter | digit | '_' | '!' | '?' | '\'')+)? ;

-- MathCore.gf

abstract MathCore =
 Terms, UserConstants
 ** {
cat
 Jmt ;
 Exp ;
 Exps ;
 Prop ;
 Kind ;
 Hypo ;
 [Hypo] ;
 Proof ;
 Label ;
 -- plus more categories
fun
 ThmJmt : Label -> [Hypo] -> Prop -> Proof -> Jmt ;
 AxiomJmt : Label -> [Hypo] -> Prop -> Jmt ;
 DefPropJmt : Label -> [Hypo] -> Prop -> Prop -> Jmt ;
 DefKindJmt : Label -> [Hypo] -> Kind -> Kind -> Jmt ;
 DefExpJmt : Label -> [Hypo] -> Exp -> Kind -> Exp -> Jmt ;
 AxiomPropJmt : Label -> [Hypo] -> Prop -> Jmt ;
 AxiomKindJmt : Label -> [Hypo] -> Kind -> Jmt ;
 AxiomExpJmt : Label -> [Hypo] -> Exp -> Kind -> Jmt ;

 AppExp : Exp -> Exps -> Exp ;
 AbsExp : [Ident] -> Exp -> Exp ;
 TermExp : Term -> Exp ;
 KindExp : Kind -> Exp ;
 TypedExp : Exp -> Kind -> Exp ;

 AndProp : [Prop] -> Prop ;
 OrProp : [Prop] -> Prop ;
 IfProp : Prop -> Prop -> Prop ;
 IffProp : Prop -> Prop -> Prop ;
 NotProp : Prop -> Prop ;
 -- plus more functions

module AbsDedukti where

data Tree (a :: Tag) where
 MJmts :: [Jmt] -> Tree 'Module_
 JStatic :: QIdent -> Exp -> Tree 'Jmt_
 JDef :: QIdent -> MTyp -> MExp -> Tree 'Jmt_
 JInj :: QIdent -> MTyp -> MExp -> Tree 'Jmt_
 JThm :: QIdent -> MTyp -> MExp -> Tree 'Jmt_
 JRules :: [Rule] -> Tree 'Jmt_
 RRule :: [Pattbind] -> Patt -> Exp -> Tree 'Rule_
 MTNone :: Tree 'MTyp_
 MTExp :: Exp -> Tree 'MTyp_
 MENone :: Tree 'MExp_
 MEExp :: Exp -> Tree 'MExp_
 EIdent :: QIdent -> Tree 'Exp_
 EApp :: Exp -> Exp -> Tree 'Exp_
 EAbs :: Bind -> Exp -> Tree 'Exp_
 EFun :: Hypo -> Exp -> Tree 'Exp_
 BVar :: QIdent -> Tree 'Bind_
 BTyped :: QIdent -> Exp -> Tree 'Bind_
 PBVar :: QIdent -> Tree 'Pattbind_
 PBTyped :: QIdent -> Exp -> Tree 'Pattbind_
 HExp :: Exp -> Tree 'Hypo_
 HVarExp :: QIdent -> Exp -> Tree 'Hypo_
 HParVarExp :: QIdent -> Exp -> Tree 'Hypo_
 PVar :: QIdent -> Tree 'Patt_
 PBracket :: Patt -> Tree 'Patt_
 PApp :: Patt -> Patt -> Tree 'Patt_
 PBind :: Bind -> Patt -> Tree 'Patt_
 QIdent :: String -> Tree 'QIdent_
-- this is all

module Informath where

data Tree :: * -> * where
 GAndAdj :: GListAdj -> Tree GAdj_
 GComparAdj :: GCompar -> GExp -> Tree GAdj_
 GOrAdj :: GListAdj -> Tree GAdj_
 GReladjAdj :: GReladj -> GExp -> Tree GAdj_
 LexAdj :: String -> Tree GAdj_
 GIdentsArgKind :: GKind -> GListIdent -> Tree GArgKind_
 GKindArgKind :: GKind -> Tree GArgKind_
 LexCompar :: String -> Tree GCompar_
 LexComparnoun :: String -> Tree GComparnoun_
 LexConst :: String -> Tree GConst_
 GComparEqsign :: GCompar -> Tree GEqsign_
 GComparnounEqsign :: GComparnoun -> Tree GEqsign_
 GEBinary :: GEqsign -> GTerm -> GTerm -> Tree GEquation_
 GAbsExp :: GListIdent -> GExp -> Tree GExp_
 GAllIdentsKindExp :: GListIdent -> GKind -> Tree GExp_
 GAllKindExp :: GKind -> Tree GExp_
 GAndExp :: GListExp -> Tree GExp_
 GAppExp :: GExp -> GExps -> Tree GExp_
 GCoercionExp :: GCoercion -> GExp -> Tree GExp_
 GConstExp :: GConst -> Tree GExp_
 GEveryIdentKindExp :: GIdent -> GKind -> Tree GExp_
 GEveryKindExp :: GKind -> Tree GExp_
 GFunListExp :: GFun -> GExps -> Tree GExp_
 GIndefIdentKindExp :: GIdent -> GKind -> Tree GExp_
 GIndefKindExp :: GKind -> Tree GExp_
 GIndexedTermExp :: GInt -> Tree GExp_

-- plus quite a few more

-- Dedukti.bnf

MJmts. Module ::= [Jmt] ;

terminator Jmt "" ;

comment "(;" ";)" ;
comment "#" ; ----

JStatic. Jmt ::= QIdent ":" Exp "." ;
JDef. Jmt ::= "def" QIdent MTyp MExp "." ;
JInj. Jmt ::= "inj" QIdent MTyp MExp "." ;
JThm. Jmt ::= "thm" QIdent MTyp MExp "." ;
JRules. Jmt ::= [Rule] "." ;

RRule. Rule ::= "[" [Pattbind] "]" Patt "-->" Exp ;
separator nonempty Rule "" ;

separator Pattbind "," ;

MTNone. MTyp ::= ;
MTExp. MTyp ::= ":" Exp ;

MENone. MExp ::= ;
MEExp. MExp ::= ":=" Exp ;

EIdent. Exp9 ::= QIdent ;
EApp. Exp5 ::= Exp5 Exp6 ;
EAbs. Exp2 ::= Bind "=>" Exp2 ;
EFun. Exp1 ::= Hypo "->" Exp1 ;

coercions Exp 9 ;

–- plus some rules for Hypo and Bind

token QIdent (letter | digit | '_' | '!' | '?' | '\'')+
('.' (letter | digit | '_' | '!' | '?' | '\'')+)? ;

-- MathCore.gf

abstract MathCore =
 Terms, UserConstants
 ** {
cat
 Jmt ;
 Exp ;
 Exps ;
 Prop ;
 Kind ;
 Hypo ;
 [Hypo] ;
 Proof ;
 Label ;
 -- plus more categories
fun
 ThmJmt : Label -> [Hypo] -> Prop -> Proof -> Jmt ;
 AxiomJmt : Label -> [Hypo] -> Prop -> Jmt ;
 DefPropJmt : Label -> [Hypo] -> Prop -> Prop -> Jmt ;
 DefKindJmt : Label -> [Hypo] -> Kind -> Kind -> Jmt ;
 DefExpJmt : Label -> [Hypo] -> Exp -> Kind -> Exp -> Jmt ;
 AxiomPropJmt : Label -> [Hypo] -> Prop -> Jmt ;
 AxiomKindJmt : Label -> [Hypo] -> Kind -> Jmt ;
 AxiomExpJmt : Label -> [Hypo] -> Exp -> Kind -> Jmt ;

 AppExp : Exp -> Exps -> Exp ;
 AbsExp : [Ident] -> Exp -> Exp ;
 TermExp : Term -> Exp ;
 KindExp : Kind -> Exp ;
 TypedExp : Exp -> Kind -> Exp ;

 AndProp : [Prop] -> Prop ;
 OrProp : [Prop] -> Prop ;
 IfProp : Prop -> Prop -> Prop ;
 IffProp : Prop -> Prop -> Prop ;
 NotProp : Prop -> Prop ;
 -- plus more functions

module AbsDedukti where

data Tree (a :: Tag) where
 MJmts :: [Jmt] -> Tree 'Module_
 JStatic :: QIdent -> Exp -> Tree 'Jmt_
 JDef :: QIdent -> MTyp -> MExp -> Tree 'Jmt_
 JInj :: QIdent -> MTyp -> MExp -> Tree 'Jmt_
 JThm :: QIdent -> MTyp -> MExp -> Tree 'Jmt_
 JRules :: [Rule] -> Tree 'Jmt_
 RRule :: [Pattbind] -> Patt -> Exp -> Tree 'Rule_
 MTNone :: Tree 'MTyp_
 MTExp :: Exp -> Tree 'MTyp_
 MENone :: Tree 'MExp_
 MEExp :: Exp -> Tree 'MExp_
 EIdent :: QIdent -> Tree 'Exp_
 EApp :: Exp -> Exp -> Tree 'Exp_
 EAbs :: Bind -> Exp -> Tree 'Exp_
 EFun :: Hypo -> Exp -> Tree 'Exp_
 BVar :: QIdent -> Tree 'Bind_
 BTyped :: QIdent -> Exp -> Tree 'Bind_
 PBVar :: QIdent -> Tree 'Pattbind_
 PBTyped :: QIdent -> Exp -> Tree 'Pattbind_
 HExp :: Exp -> Tree 'Hypo_
 HVarExp :: QIdent -> Exp -> Tree 'Hypo_
 HParVarExp :: QIdent -> Exp -> Tree 'Hypo_
 PVar :: QIdent -> Tree 'Patt_
 PBracket :: Patt -> Tree 'Patt_
 PApp :: Patt -> Patt -> Tree 'Patt_
 PBind :: Bind -> Patt -> Tree 'Patt_
 QIdent :: String -> Tree 'QIdent_

module Informath where

data Tree :: * -> * where
 GAndAdj :: GListAdj -> Tree GAdj_
 GComparAdj :: GCompar -> GExp -> Tree GAdj_
 GOrAdj :: GListAdj -> Tree GAdj_
 GReladjAdj :: GReladj -> GExp -> Tree GAdj_
 LexAdj :: String -> Tree GAdj_
 GIdentsArgKind :: GKind -> GListIdent -> Tree GArgKind_
 GKindArgKind :: GKind -> Tree GArgKind_
 LexCompar :: String -> Tree GCompar_
 LexComparnoun :: String -> Tree GComparnoun_
 LexConst :: String -> Tree GConst_
 GComparEqsign :: GCompar -> Tree GEqsign_
 GComparnounEqsign :: GComparnoun -> Tree GEqsign_
 GEBinary :: GEqsign -> GTerm -> GTerm -> Tree GEquation_
 GAbsExp :: GListIdent -> GExp -> Tree GExp_
 GAllIdentsKindExp :: GListIdent -> GKind -> Tree GExp_
 GAllKindExp :: GKind -> Tree GExp_
 GAndExp :: GListExp -> Tree GExp_
 GAppExp :: GExp -> GExps -> Tree GExp_
 GCoercionExp :: GCoercion -> GExp -> Tree GExp_
 GConstExp :: GConst -> Tree GExp_
 GEveryIdentKindExp :: GIdent -> GKind -> Tree GExp_
 GEveryKindExp :: GKind -> Tree GExp_
 GFunListExp :: GFun -> GExps -> Tree GExp_
 GIndefIdentKindExp :: GIdent -> GKind -> Tree GExp_
 GIndefKindExp :: GKind -> Tree GExp_
 GIndexedTermExp :: GInt -> Tree GExp_
 -- plus some more

module Dedukti2Core where

import Dedukti.AbsDedukti
import Informath
import DeduktiOperations

jmt2jmt :: Jmt -> GJmt
jmt2jmt jmt = case jmt of
 JDef ident (MTExp typ) meexp ->
 let mexp = case meexp of
 MEExp exp -> Just exp
 _ -> Nothing
 in case (splitType typ, guessCat ident typ) of
 ((hypos, kind), c) | elem c ["Noun", "Set"] ->
 (maybe (GAxiomKindJmt axiomLabel)
 (\exp x y -> GDefKindJmt definitionLabel x y (exp2kind exp)) mexp)
 (GListHypo (hypos2hypos hypos))
 (ident2kind ident)
 ((hypos, kind), c) | elem c ["Name", "Const", "Unknown"] ->
 (maybe (GAxiomExpJmt axiomLabel)

 (\exp x y z -> GDefExpJmt definitionLabel x y z (exp2exp exp)) mexp)
 (GListHypo (hypos2hypos hypos))

 (ident2exp ident)
 (exp2kind kind)

…

exp2kind :: Exp -> GKind

exp2prop :: Exp -> GProp

exp2exp :: Exp -> GExp

exp2proof :: Exp -> GProof

Dedukti Exp GF category linearization linguistic category

union A B Exp the union of A and B noun phrase

Nat Kind natural number common noun

divisible 9 3 Prop 9 is divisible by 3 sentence

oddS 0 evenZ Proof 0 is even. Therefore 1 is odd. text

-- Dedukti.bnf

MJmts. Module ::= [Jmt] ;

terminator Jmt "" ;

comment "(;" ";)" ;
comment "#" ; ----

JStatic. Jmt ::= QIdent ":" Exp "." ;
JDef. Jmt ::= "def" QIdent MTyp MExp "." ;
JInj. Jmt ::= "inj" QIdent MTyp MExp "." ;
JThm. Jmt ::= "thm" QIdent MTyp MExp "." ;
JRules. Jmt ::= [Rule] "." ;

RRule. Rule ::= "[" [Pattbind] "]" Patt "-->" Exp ;
separator nonempty Rule "" ;

separator Pattbind "," ;

MTNone. MTyp ::= ;
MTExp. MTyp ::= ":" Exp ;

MENone. MExp ::= ;
MEExp. MExp ::= ":=" Exp ;

EIdent. Exp9 ::= QIdent ;
EApp. Exp5 ::= Exp5 Exp6 ;
EAbs. Exp2 ::= Bind "=>" Exp2 ;
EFun. Exp1 ::= Hypo "->" Exp1 ;

coercions Exp 9 ;

–- plus some rules for Hypo and Bind

token QIdent (letter | digit | '_' | '!' | '?' | '\'')+
('.' (letter | digit | '_' | '!' | '?' | '\'')+)? ;

-- MathCore.gf

abstract MathCore =
 Terms, UserConstants
 ** {
cat
 Jmt ;
 Exp ;
 Exps ;
 Prop ;
 Kind ;
 Hypo ;
 [Hypo] ;
 Proof ;
 Label ;
 -- plus more categories
fun
 ThmJmt : Label -> [Hypo] -> Prop -> Proof -> Jmt ;
 AxiomJmt : Label -> [Hypo] -> Prop -> Jmt ;
 DefPropJmt : Label -> [Hypo] -> Prop -> Prop -> Jmt ;
 DefKindJmt : Label -> [Hypo] -> Kind -> Kind -> Jmt ;
 DefExpJmt : Label -> [Hypo] -> Exp -> Kind -> Exp -> Jmt ;
 AxiomPropJmt : Label -> [Hypo] -> Prop -> Jmt ;
 AxiomKindJmt : Label -> [Hypo] -> Kind -> Jmt ;
 AxiomExpJmt : Label -> [Hypo] -> Exp -> Kind -> Jmt ;

 AppExp : Exp -> Exps -> Exp ;
 AbsExp : [Ident] -> Exp -> Exp ;
 TermExp : Term -> Exp ;
 KindExp : Kind -> Exp ;
 TypedExp : Exp -> Kind -> Exp ;

 AndProp : [Prop] -> Prop ;
 OrProp : [Prop] -> Prop ;
 IfProp : Prop -> Prop -> Prop ;
 IffProp : Prop -> Prop -> Prop ;
 NotProp : Prop -> Prop ;
 -- plus more functions

module AbsDedukti where

data Tree (a :: Tag) where
 MJmts :: [Jmt] -> Tree 'Module_
 JStatic :: QIdent -> Exp -> Tree 'Jmt_
 JDef :: QIdent -> MTyp -> MExp -> Tree 'Jmt_
 JInj :: QIdent -> MTyp -> MExp -> Tree 'Jmt_
 JThm :: QIdent -> MTyp -> MExp -> Tree 'Jmt_
 JRules :: [Rule] -> Tree 'Jmt_
 RRule :: [Pattbind] -> Patt -> Exp -> Tree 'Rule_
 MTNone :: Tree 'MTyp_
 MTExp :: Exp -> Tree 'MTyp_
 MENone :: Tree 'MExp_
 MEExp :: Exp -> Tree 'MExp_
 EIdent :: QIdent -> Tree 'Exp_
 EApp :: Exp -> Exp -> Tree 'Exp_
 EAbs :: Bind -> Exp -> Tree 'Exp_
 EFun :: Hypo -> Exp -> Tree 'Exp_
 BVar :: QIdent -> Tree 'Bind_
 BTyped :: QIdent -> Exp -> Tree 'Bind_
 PBVar :: QIdent -> Tree 'Pattbind_
 PBTyped :: QIdent -> Exp -> Tree 'Pattbind_
 HExp :: Exp -> Tree 'Hypo_
 HVarExp :: QIdent -> Exp -> Tree 'Hypo_
 HParVarExp :: QIdent -> Exp -> Tree 'Hypo_
 PVar :: QIdent -> Tree 'Patt_
 PBracket :: Patt -> Tree 'Patt_
 PApp :: Patt -> Patt -> Tree 'Patt_
 PBind :: Bind -> Patt -> Tree 'Patt_
 QIdent :: String -> Tree 'QIdent_

module Informath where

data Tree :: * -> * where
 GAndAdj :: GListAdj -> Tree GAdj_
 GComparAdj :: GCompar -> GExp -> Tree GAdj_
 GOrAdj :: GListAdj -> Tree GAdj_
 GReladjAdj :: GReladj -> GExp -> Tree GAdj_
 LexAdj :: String -> Tree GAdj_
 GIdentsArgKind :: GKind -> GListIdent -> Tree GArgKind_
 GKindArgKind :: GKind -> Tree GArgKind_
 LexCompar :: String -> Tree GCompar_
 LexComparnoun :: String -> Tree GComparnoun_
 LexConst :: String -> Tree GConst_
 GComparEqsign :: GCompar -> Tree GEqsign_
 GComparnounEqsign :: GComparnoun -> Tree GEqsign_
 GEBinary :: GEqsign -> GTerm -> GTerm -> Tree GEquation_
 GAbsExp :: GListIdent -> GExp -> Tree GExp_
 GAllIdentsKindExp :: GListIdent -> GKind -> Tree GExp_
 GAllKindExp :: GKind -> Tree GExp_
 GAndExp :: GListExp -> Tree GExp_
 GAppExp :: GExp -> GExps -> Tree GExp_
 GCoercionExp :: GCoercion -> GExp -> Tree GExp_
 GConstExp :: GConst -> Tree GExp_
 GEveryIdentKindExp :: GIdent -> GKind -> Tree GExp_
 GEveryKindExp :: GKind -> Tree GExp_
 GFunListExp :: GFun -> GExps -> Tree GExp_
 GIndefIdentKindExp :: GIdent -> GKind -> Tree GExp_
 GIndefKindExp :: GKind -> Tree GExp_
 GIndexedTermExp :: GInt -> Tree GExp_
 -- plus some more

module Dedukti2Core where

import Dedukti.AbsDedukti
import Informath
import DeduktiOperations

jmt2jmt :: Jmt -> GJmt
jmt2jmt jmt = case jmt of
 JDef ident MTNone (MEExp exp) ->
 GDefUntypedExpJmt (LexLabel "definitionLabel") (ident2exp ident) (exp2exp exp)
 JDef ident (MTExp typ) meexp ->
 let mexp = case meexp of
 MEExp exp -> Just exp
 _ -> Nothing
 in case (splitType typ, guessCat ident typ) of
 ((hypos, kind), c) | elem c ["Label"] ->
 (maybe GAxiomJmt (\exp x y z -> GThmJmt x y z (exp2proof exp)) mexp)
 (ident2label ident)
 (GListHypo (hypos2hypos hypos))
 (exp2prop kind)

…

exp2kind :: Exp -> GKind

exp2prop :: Exp -> GProp

exp2exp :: Exp -> GExp

exp2proof :: Exp -> GProof

ident2ident :: QIdent -> GIdent
ident2ident ident = case ident of
 QIdent s -> GStrIdent (GString s)

module Core2Dedukti where

import Dedukti.AbsDedukti
import Informath
import DeduktiOperations

prop2dedukti :: GProp -> Exp
prop2dedukti prop = case prop of
 GProofProp p -> EApp (EIdent (QIdent "Proof")) (prop2dedukti p)
 GFalseProp -> propFalse
 GIdentProp ident -> EIdent (ident2ident ident)
 GAndProp (GListProp props) -> foldl1 propAnd (map prop2dedukti props)

kind2dedukti :: GKind -> Exp
kind2dedukti kind = case kind of
 GElemKind k -> EApp (EIdent (QIdent "Elem")) (kind2dedukti k)
 GTermKind (GTIdent ident) -> EIdent (ident2ident ident)
 GSetKind (LexSet s) -> EIdent (QIdent (s))

exp2dedukti :: GExp -> Exp
exp2dedukti exp = case exp of
 GTermExp (GTNumber (GInt n)) -> int2exp n
 GTermExp (GTIdent ident) -> EIdent (ident2ident ident)
 GAppExp exp exps ->
 foldl1 EApp (map exp2dedukti (exp : (exps2list exps)))
 GAbsExp (GListIdent idents) exp ->
 foldr
 (\x y -> EAbs (BVar (ident2ident x)) y)
 (exp2dedukti exp)
 idents

Dealing with identifiers

-- BaseConstants.dk

Set : Type.
Prop : Type.

(; ignored in Dedukti2Core ;)
Elem : Set -> Type.
Proof : Prop -> Type.

(; logical operators, hard-coded in MathCore ;)
false : Prop.
and : (A : Prop) -> (B : Prop) -> Prop.
or : (A : Prop) -> (B : Prop) -> Prop.
if : Prop -> Prop -> Prop.
forall : (A : Set) -> (Elem A -> Prop) -> Prop.
exists : (A : Set) -> (Elem A -> Prop) -> Prop.

def not : Prop -> Prop := A => if A false.
def iff : Prop -> Prop -> Prop :=
 A => B => and (if A B) (if B A).

(; constants defined in a lexicon ;)

def Nat : Set := Num.
def Int : Set := Num.
def Rat : Set := Num.
def Real : Set := Num.

Eq : Elem Real -> Elem Real -> Prop.
Lt : Elem Real -> Elem Real -> Prop.
Gt : Elem Real -> Elem Real -> Prop.
Neq : Elem Real -> Elem Real -> Prop.
Leq : Elem Real -> Elem Real -> Prop.
Geq : Elem Real -> Elem Real -> Prop.

plus : (x : Elem Real) -> (y : Elem Real) -> Elem Real.
minus : Elem Real -> Elem Real -> Elem Real.
times : Elem Real -> Elem Real -> Elem Real.

(; BaseConstants.dk ;)

(; constants defined in a lexicon ;)

Nat : Set.
Int : Set.
Rat : Set.
Real : Set.

Eq : Elem Real -> Elem Real -> Prop.
Lt : Elem Real -> Elem Real -> Prop.
Gt : Elem Real -> Elem Real -> Prop.

plus : (x : Elem Real) -> (y : Elem Real) -> Elem Real.
minus : Elem Real -> Elem Real -> Elem Real.
times : Elem Real -> Elem Real -> Elem Real.

even : Elem Int -> Prop.
def odd : Elem Int -> Prop := n => not (even n).

base_constant_data.dkgf

for translating between Dedukti and GF abstract syntax

Nat BASE Set natural_Set
Int BASE Set integer_Set
Rat BASE Set rational_Set
Real BASE Set real_Set

Eq BASE Compar Eq_Compar
Lt BASE Compar Lt_Compar
Gt BASE Compar Gt_Compar

plus BASE Oper plus_Oper
minus BASE Oper minus_Oper
times BASE Oper times_Oper

even BASE Adj even_Adj
odd BASE Adj odd_Adj

for generating GF linearization rules

#LIN Eng natural_Set = mkSet "N" "natural" number_N
#LIN Fre natural_Set = mkSet L.natural_Set "naturel" nombre_N
#LIN Swe natural_Set = mkSet L.natural_Set "naturlig" tal_N

#LIN Eng Lt_Compar = mkCompar "<" "less" "than"
#LIN Fre Lt_Compar = mkCompar "<" (mkAP (mkA "inférieur")) dative
#LIN Swe Lt_Compar = mkCompar "<" "mindre" "än"

#LIN Eng even_Adj = mkAdj "even"
#LIN Fre even_Adj = mkAdj "pair"
#LIN Swe even_Adj = mkAdj "jämn"

for converting identifiers from third-party projects

le ALIAS matita Leq

abstract BaseConstants = {

-- GF cat usage example
—---
 Noun ; -- Kind -- set
 Fam ; -- Kind -> Kind -- list of integers
 Adj ; -- Exp -> Prop -- even
 Verb ; -- Exp -> Exp -- converge
 Reladj ; -- Exp -> Exp -> Prop -- divisible by
 Relverb ; -- Exp -> Exp -> Prop -- divide
 Relnoun ; -- Exp -> Exp -> Prop -- root of
 Name ; -- Exp -- contradiction
 Fun ; -- [Exp] -> Exp -- radius of
 Label ; -- Exp -- theorem 1

 Set ; -- Kind | Term -- integer, Z
 Const ; -- Exp | Term -- the empty set, Ø
 Oper ; -- Exp -> Exp -> Exp | Term -- the sum of, +
 Compar ; -- Exp -> Exp -> Prop | Formula -- greater than, >
 Comparnoun ; -- Exp -> Exp -> Prop | Formula -- a subset of, \sub

def sphenic : Nat -> Prop
 := …
(; GF: sphenic number ;)

sphenic NEW number_theory Adj spenic_Adj

#LIN Eng sphenic_Adj = mkAdj "sphenic"
#LIN Fre sphenic_Adj = mkAdj "sphénique"
#LIN Swe sphenic_Adj = mkAdj "sfenisk"

from Wikidata

{"Q638185": {
 "pl": "Liczby sfeniczne",
 "de": "sphenische Zahl",
 "en": "sphenic number",
 "es": "número esfénico",
 "fr": "nombre sphénique",
 "zh": "楔形数",
 "sv": "sfeniskt tal",
 "ta": "ஸ்ஃபனீிக் எண்",
 }
}

lexical rule extraction

AR, Building Grammar Libraries for Mathematics and
Avoiding Manual Work.. Presentation at Hausdorff
Center for Mathematics, 2024,
https://www.youtube.com/watch?v=EQ-k_JQ7fDM&t=5s

https://www.youtube.com/watch?v=EQ-k_JQ7fDM&t=5s

 Lexicon Extraction from Wikidata

Ingredients
Wikidata: https://www.wikidata.org

- a list of math terms provided by Frederik Schaeffer
- MathGloss of Lucy Horowitz and Valeria de Paiva
- in total, 5381 terms

GF RGL

- smart paradigms for inflection
- syntactic combination rules
- morphological dictionaries

UD parsing

- extract parts of speech, lemmas, and some inflection for unknown words

https://www.wikidata.org

Extraction functions for syntax (using the RGL)
 AdjCN : AP -> CN -> CN ; -- continuous function

 CompoundN : N -> N -> N ; -- function space

 IntCompoundCN : Int -> CN -> CN ; -- 13-cube

 NameCompoundCN : PN -> CN -> CN ; -- Lie group

 NounIntCN : CN -> Int -> CN ; -- Grinberg graph 42

 NounPrepCN : CN -> Adv -> CN ; -- ring of sets

 NounGenCN : CN -> NP -> CN ; -- bishop's graph

 PositA : A -> AP ; -- uniform

 AdAP : AdA -> AP -> AP ; -- almost uniform

 AAdAP : A -> AP -> AP ; -- algebraically closed

 PastPartAP : V -> AP ; -- connected

 PrepNP : Prep -> NP -> Adv ; -- (integration) by parts

 -- plus some more functions, 21 functions in total

RGL morphological dictionaries
lin isotropy_N = mkN "isotropy" "isotropies" ;

lin israeli_A = mkAMost "israeli" "israelily" ;

lin israeli_N = mkN "israeli" "israelis" ;

lin issue_N = mkN "issue" "issues" ;

lin issue_V = mkV "issue" "issued" "issued" ;

lin issuer_N = mkN "issuer" "issuers" ;

lin isthmian_A = mkAMost "isthmian" "isthmianly" ;

lin isthmus_N = mkN "isthmus" "isthmuses" ;

lin italic_A = mkAMost "italic" "italicly" ;

lin italic_N = mkN "italic" "italics" ;

lin italicize_V = mkV "italicize" "italicized" "italicized" ;

lin itch_N = mkN "itch" "itches" ;

lin itch_V = mkV "itch" "itched" "itched" ;

lin itchy_A = mkA "itchy" "itchier" "itchiest" "itchily" ;

lin item_Adv = mkAdv "item" ;

lin item_N = mkN "item" "items" ;

lin itemize_V = mkV "itemize" "itemized" "itemized" ;

lin iterate_V = mkV "iterate" "iterated" "iterated" ;

lin iteration_N = mkN "iteration" "iterations" ;

lin iterative_A = mkAMost "iterative" "iteratively" ;

-- English: 56,598 lemmas in total

lin abfieseln_V = prefixV "ab" (regV "fieseln") ;

lin abfinden_V = prefixV "ab" (irregV "finden" "findet" "fand"

"fände" "gefunden") ;

lin abfindung_N = mkN "Abfindung" ;

lin abflachen_V = prefixV "ab" (regV "flachen") ;

lin abflauen_V = prefixV "ab" (regV "flauen") ;

lin abfliegen_V = prefixV "ab" (irregV "fliegen" "fliegt" "flog"

"flöge" "geflogen") ;

lin abfliessen_V = prefixV "ab" (irregV "fließen" "fließt" "floss"

"floss" "geflossen") ;

lin abflug_N = mkN "Abflug" "Abflüge" masculine ;

lin abfluss_N = mkN "Abfluss" "Abflüsse" masculine ;

lin abflusslos_A = regA "abflusslos" ;

lin abflussrohr_N = mkN "Abflussrohr" "Abflussrohre" neuter ;

lin abfolge_N = mkN "Abfolge" "Abfolgen" feminine ;

lin abformen_V = prefixV "ab" (regV "formen") ;

lin abformmasse_N = mkN "Abformmasse" "Abformmassen" feminine ;

lin abfotografieren_V = prefixV "ab" (regV "fotografieren") ;

lin abfrage_N = mkN "Abfrage" "Abfragen" feminine ;

lin abfragen_V = prefixV "ab" (regV "fragen") ;

-- German: 44,229 lemmas in total

Demo: building a lexicon for French

 ./build_lexicon.py (-first|-added) <fr> <Fre> -from=<Eng>? <STEPNUM>+

- Step 0: preparations
- Step 1: extract wikidata for that language into qlist
- Step 2: parse with UDPipe
- Step 3: use the UDPipe parse to clean up corpus and add to lexicon
- Step 4: build a lexicon extension
- Step 5: parse the terms with the extended lexicon
- Step 6: (if -first) generate GF modules for abstract and the first concrete
- Step 7: (if -add) add a new concrete syntax
- Step 8: test your grammar in GF

https://github.com/aarneranta/informath/tree/main/old/v2/extraction

https://github.com/aarneranta/informath/tree/main/old/v2/extraction

From MathCore to full Informath

 has
natural language content that lacks
the inherent diversity and flexibility in
expression: they are rigid and not
natural-language-like.

 has
natural language content that lacks
the inherent diversity and flexibility in
expression: they are rigid and not
natural-language-like.

Dedukti

 Informath

informalization

formalization

formal
Agda

Rocq

Lean

English

French

Swedish

MathCore

NLG

semantics

informal

to one to many

total

partial

prop110 : (a : Elem Int) -> (c : Elem Int) ->
 Proof (and (odd a) (odd c)) -> Proof (forall
 Int (b => even (plus (times a b) (times b c)))).

abstract Informath = MathCore ** {

fun
-- use symbolic expressions whenever possible
 FormulaProp : Formula -> Prop ;
 SetTerm : Set -> Term ;
 ConstTerm : Const -> Term ;
 ComparEqsign : Compar -> Eqsign ;

-- aggregation

 AndAdj : [Adj] -> Adj ;
 OrAdj : [Adj] -> Adj ;

 AndExp : [Exp] -> Exp ;
 OrExp : [Exp] -> Exp ;

-- post-quantification

 PostQuantProp : Prop -> Exp -> Prop ;

}

prop110 : (a : Elem Int) -> (c : Elem Int) ->
 Proof (and (odd a) (odd c)) -> Proof (forall
 Int (b => even (plus (times a b) (times b c)))).

module Core2Informath where

import Informath

nlg :: Opts -> Tree a -> [Tree a]
nlg opts tree = concatMap variations [t, ut, ft, aft, iaft, viaft]
 where
 t = unparenth tree
 ut = uncoerce t
 ft = formalize ut
 aft = aggregate (flatten ft)
 iaft = insitu aft
 viaft = varless iaft

insitu :: Tree a -> Tree a
insitu t = case t of
 GAllProp (GListArgKind [argkind]) (GAdjProp adj exp) -> case subst argkind exp of
 Just (x, kind) -> GAdjProp adj (GAllIdentsKindExp (GListIdent [x]) kind)
 _ -> t
 GAllProp (GListArgKind [argkind]) (GNotAdjProp adj exp) -> case subst argkind exp of
 Just (x, kind) -> GAdjProp adj (GNoIdentsKindExp (GListIdent [x]) kind)
 _ -> t
 GExistProp (GListArgKind [argkind]) (GAdjProp adj exp) -> case subst argkind exp of
 Just (x, kind) -> GAdjProp adj (GSomeIdentsKindExp (GListIdent [x]) kind)
 _ -> t
 _ -> composOp insitu t

varless :: Tree a -> Tree a
varless t = case t of
 GAllIdentsKindExp (GListIdent [_]) kind -> GAllKindExp kind
 GNoIdentsKindExp (GListIdent [_]) kind -> GNoKindExp kind
 GSomeIdentsKindExp (GListIdent [_]) kind -> GSomeKindExp kind
 _ -> composOp varless t

NLG (Natural Language Generation) is
a combination of selected almost
compositional operations.

Another example: in situ quantification

 (Q x : A)B(x) ⇒ B(Q A)

if x occurs exactly once in B:

The variable can optionally be omitted.

B Bringert and A. Ranta, A pattern for almost
compositional functions. Journal of Functional
Programming 18 (5-6), 567-598, 2008.

abstract Informath = MathCore ** {

cat
 [Adj] {2} ;
 [Exp] {2} ;

fun
-- to use symbolic expressions whenever possible
 FormulaProp : Formula -> Prop ;
 SetTerm : Set -> Term ;
 ConstTerm : Const -> Term ;
 ComparEqsign : Compar -> Eqsign ;

-- to remove parentheses around complex propositions
 SimpleAndProp : [Prop] -> Prop ;

-- to aggregate adjectives and expressions
 AndAdj : [Adj] -> Adj ;
 OrAdj : [Adj] -> Adj ;

 AndExp : [Exp] -> Exp ;
 OrExp : [Exp] -> Exp ;

-- in situ quantifiers

 AllKindExp : Kind -> Exp ;
 AllIdentsKindExp : [Ident] -> Kind -> Exp ;

 SomeKindExp : Kind -> Exp ;
 SomeIdentsKindExp : [Ident] -> Kind -> Exp ;

 NoIdentsKindExp : [Ident] -> Kind -> Exp ;
 NoKindExp : Kind -> Exp ;

-- miscellaneous alternative expressions

 PostQuantProp : Prop -> Exp -> Prop ;
}

prop50 : Proof (forall Nat
 (n => not (and (even n) (odd n)))).

data Scores = Scores {
 tree_length :: Int,
 tree_depth :: Int,
 characters :: Int,
 tokens :: Int,
 subsequent_dollars :: Int,
 initial_dollars :: Int,
 parses :: Int
 }

Scoring and ranking alternative phrases

$./RunInformath -ranking -variations -test-ambiguity test/prop110.dk
showing a sample from 87 results, first and last included

Prop110. Let $a , c \in Z$. Then if a and c are odd, then $a b + b c$ is even for every integer b.
%% (Scores {tree_length = 55, tree_depth = 10, characters = 104, tokens = 40, subsequent_dollars = 0, initial_dollars =
0, parses = 2},211)

Prop110. Let $a , c \in Z$. Then a and c are odd, only if $a b + b c$ is even for every integer b.
%% (Scores {tree_length = 59, tree_depth = 10, characters = 110, tokens = 43, subsequent_dollars = 1, initial_dollars =
0, parses = 2},225)

Prop110. Let a and c be integers. Assume that a and c are odd. Then $a b + b c$ is even for every integer b.
%% (Scores {tree_length = 53, tree_depth = 11, characters = 118, tokens = 42, subsequent_dollars = 0, initial_dollars =
0, parses = 1},225)

Prop110. Let a and c be integers. Assume that a and c are odd. Then for all integers b, $a b + b c$ is even.
%% (Scores {tree_length = 55, tree_depth = 11, characters = 118, tokens = 43, subsequent_dollars = 1, initial_dollars =
0, parses = 1},229)

Prop110. For all integers a and c, if a is odd and c is odd, then for all integers b, $a b + b c$ is even.
%% (Scores {tree_length = 57, tree_depth = 11, characters = 116, tokens = 44, subsequent_dollars = 1, initial_dollars =
0, parses = 1},230)

Prop110. Let a and c be instances of integers. Then we can prove that a is odd and c is odd, only if we can
prove that for all integers b, the sum of the product of a and b and the product of b and c is even.
%% (Scores {tree_length = 70, tree_depth = 15, characters = 226, tokens = 72, subsequent_dollars = 0, initial_dollars =
0, parses = 3},386)

Prop110. Let a and c be instances of integers. Assume that we can prove that a is odd and c is odd. Then we can
prove that for all integers b, the sum of the product of a and b and the product of b and c is even.
%% (Scores {tree_length = 71, tree_depth = 14, characters = 230, tokens = 72, subsequent_dollars = 0, initial_dollars =
0, parses = 3},390)

http://prop110.dk

module Informath2Core where

import Informath

data SEnv = SEnv {varlist :: [String]}

initSEnv = SEnv {varlist = []}

newVar :: SEnv -> (GIdent, SEnv)

sem :: SEnv -> Tree a -> Tree a
sem env t = case t of

 GAdjProp (GAndAdj (GListAdj adjs)) x ->
 let sx = sem env x
 in GAndProp (GListProp [GAdjProp adj sx | adj <- adjs])

 GAdjProp adj (GEveryKindExp kind) ->
 let (x, env') = newVar env
 in sem env'
 (GAllProp (GListArgKind [GIdentsArgKind kind (GListIdent [x])])
 (GAdjProp adj (GTermExp (GTIdent x))))

From Informath to Core is simpler:

- deterministic conversion of Informath
extensions to MathCore

- like logical semantics (since
MathCore is an unambiguous syntax
for logic)

- fresh variables must be created for
varless in situ quantifiers

Order is important:

every number is even or odd

→ for all numbers x, x is (even or odd)
→ for all numbers x, (x is even or x is odd)

→ every number is even or every number is odd
→ (for all numbers x, x is even) or (for all numbers x, x is odd)

Demos

all: Informath.pgf Dedukti Agda Coq Lean RunInformath

Informath.pgf:
cd grammars ; gf --make -output-format=haskell -haskell=lexical --haskell=gadt

-lexical=Name,Noun,Fam,Adj,Rel,Fun,Label,Const,Oper,Compar,Set,Coercion,Relverb,Relno
un,Reladj,Comparnoun,Verb --probs=Informath.probs InformathEng.gf InformathFre.gf
InformathSwe.gf

Dedukti:
cd typetheory ; bnfc -m -p Dedukti --haskell-gadt Dedukti.bnf ; make

Agda:
cd typetheory ; bnfc -m -p Agda --haskell-gadt Agda.bnf ; make

Lean:
cd typetheory ; bnfc -m -p Lean --haskell-gadt Lean.bnf ; make

Coq:
cd typetheory ; bnfc -m -p Coq --haskell-gadt Coq.bnf ; make

RunInformath:
ghc -package gf RunInformath.hs

make

demo:
./RunInformath -lang=Fre test/exx.dk
./RunInformath -lang=Swe test/exx.dk
./RunInformath -lang=Eng test/exx.dk
./RunInformath -lang=Eng test/exx.dk >exx.txt
./RunInformath -lang=Eng exx.txt
./RunInformath -lang=Eng test/gflean-data.txt

cat BaseConstants.dk test/exx.dk >bexx.dk
dk check bexx.dk

./RunInformath -to-agda test/exx.dk >exx.agda
agda --prop exx.agda

./RunInformath -to-coq test/exx.dk >exx.v
cat BaseConstants.v exx.v >bexx.v

coqc bexx.v
./RunInformath -to-lean test/exx.dk >exx.lean

cat BaseConstants.lean exx.lean >bexx.lean
lean bexx.lean

./RunInformath -to-latex-file -variations test/top100.dk >out/top100.tex
echo "consider pdflatex out/top100.tex"

./RunInformath -to-latex-file -variations test/sets.dk >out/sets.tex
echo "consider pdflatex out/sets.tex"

make demo

Generating synthetic data
For those who are interested just in the generation of synthetic data, the following commands
(after building Informath with make) can do it: assuming that you have a .dk file available, build a
.jsonl file with all conversions of each Dedukti judgement:

 $./RunInformath -parallel <file>.dk > <file>.jsonl

After that, select the desired formal and informal languages to generate a new .jsonl data with
just those pairs:

 $ python3 test/jsonltest.py <file.jsonl> <formal> <informal>

The currently available values of <formal> and <informal> are the keys in <file>.jsonl - for
example, agda and InformathEng, respectively.

https://github.com/aarneranta/informath/

https://github.com/aarneranta/informath/

Fine-tuning an LLM:
- Qwen2.5-7B-instruct

Trained with ~1000 synthetic pairs of
(dedukti,agda,coq,lean) - (English,
French, Swedish) with

- arithmetic
- naive set theory
- concepts for 27 of the "100

theorems"

Tested with 57 natural native-speaker
expressions of those theorems (by
Nick Smallbone)

Pei Huang, Autoformalization for
Agda via Fine-tuning Large Language
Models, MSc thesis at Chalmers,
2025

https://chat.mistral.ai/chat/60f44ab2-d86f-4ec2-b382-d94fd471eef0 by Josef Urban, 13 July 2025

Translate the following latex InformathEng translation problems (each is on one line) to deducti.
Do it analogously to the following extraction examples. Put the output all into one piece of text, preceded always by input (as in the
examples).
BEGIN EXAMPLES
{"InformathEng": "thm58 . let $ A $ be a set . let $ n \\in N $. then $ | A | = n $, only if for all natural numbers $ k $, if $ k \\leq n $, then $ |
\\binom{ A }{ k } | = \\binom{ n }{ k } $.", "dedukti": "thm58 : (A : Set) -> (n : Elem Nat) -> Proof (Eq (cardinality A) n) -> (k : Elem Nat)
-> Proof (Leq k n) -> Proof (Eq (cardinality (combinationsFromSet A k)) (binomial n k)) ."}
{— …
END EXAMPLES
BEGIN TRANSLATION PROBLEMS
{"InformathEng": "Thm01f . there exists no natural number $ p $, such that there exists a natural number $ q $, such that the square of $ p
$ is equal to the product of $ 2 $ and the square of $ q $.", "dedukti":
{"InformathEng": "thm52 . let $ A $ be a set . then we can prove that $ A $ is finite , only if we can prove that the cardinality of the power set
of $ A $ is equal to the exponentiation of $ 2 $ and the cardinality of $ A $.", "dedukti":
— …
END TRANSLATION PROBLEMS

Sure, here are the translations of the given InformathEng statements to Dedukti:

input: {"InformathEng": "Thm01f . there exists no natural number $ p $, such that
there exists a natural number $ q $, such that the square of $ p $ is equal to the
product of $ 2 $ and the square of $ q $.", "dedukti": "Thm01f : Proof (not (exists
Nat (p => exists Nat (q => Eq (square p) (times 2 (square q)))))) ."}
— …

https://chat.mistral.ai/chat/60f44ab2-d86f-4ec2-b382-d94fd471eef0

Conclusion

Symbolic informalization can be

- natural and fluent
- by extending CNL towards the full language of mathematics

- feasible to develop
- by Dedukti, GF, and rule extraction

- shared by different formal and informal languages
- by Dedukti and GF interlinguas

- inverted to autoformalization
- natively, by reversilibility of GF
- as backup, by fine-tuned LLM + feedback informalization

Symbolic informalization is

- based on well-understood compiler-like techniques

- potentially 100% reliable

- fast and energy-efficient

- a natural extension of formal proof techniques

Building on the CNL tradition, the new things in Informath are

- wider coverage of alternative verbalizations

- multilinguality

- guaranteed grammaticality via GF RGL

- syntactic ambiguity allowed, resolved semantically

Some future work

Build up a multilingual lexicon with terms and definitions

- from Wikidata
- from Agda, Lean, Rocq, HOL-light, Isabelle, Mizar, …

Show competitive results in autoformalization

- learn from definitions, test with theorem statements

Improve the verbalization of proofs

- combine proof terms with scripts to identify crucial steps

Create APIs to connect with interactive proof systems

- use as a library or a plugin component

https://github.com/aarneranta/informath

Don't guess if you know.

https://github.com/aarneranta/informath

